Ю.А. КУТЛАХМЕДОВ

ДОРОГА К ТЕОРЕТИЧЕСКОЙ РАДИОЭКОЛОГИИ

УДК 577.34:574.24:539.16
ББК 28.080.1
К95

Автор, опираясь на разработанную им теорию экологической емкости и радиоемкости, провел анализ и исследование существующих проблем теоретической радиоэкологии с единых позиций. Разные экосистемы рассматриваются автором, как системы транспорта радионуклидов по разным типам экосистем. Способность компонент экосистем накапливать и удерживать радионуклиды, предлагается рассматривать, как характеристику надежности экосистем в плане их способности к транспорту радионуклидов от окружающей среды к человеку и биоте. Это позволило автору привлечь к решению задач радиоэкологии мощно развитой теории и моделей надежности сложных систем. Показано, что радионуклиды способны быть важными трассерами, характеризующими фундаментальные характеристики разного типа экосистем.

Хочу выразить мою глубокую признательность моему учителю Д.М. Гродзинскому за поддержку и содействие в размышлениях и исследованиях, и сотрудникам лаборатории «Радиоэкологическая надежность биосистем» за плодотворное сотрудничество. Особенно хочу поблагодарить А.Н. Михеева за сотрудничество, обсуждение и огромную помощь при подготовке рукописи к печати.

Книга будет полезна и интересна для студентов, аспирантов и научных сотрудников в области радиоэкологии, радиобиологии и общей экологии.

© Кутлахмедов Ю.А., 2015
ОГЛАВЛЕНИЕ

ЧАСТЬ 1. ВВЕДЕНИЕ В ПРОБЛЕМЫ ТЕОРЕТИЧЕСКОЙ РАДИОЭКОЛОГИИ

1. Дозиметрические единицы в радиоэкологии .. 11
 1.1. Основные дозиметрические единицы .. 11
 1.1.1. Производные единицы ... 11
1.2. Коэффициенты накопления и перехода радионуклидов в экосистемах ... 12
 1.2.1. Понятие критической группы населения 16
1.3. Модели оценки поглощенных доз облучения от разных источников ... 17
 1.3.1. Расчет и оценка поглощенной дозы при внешнем облучении ... 17
 1.3.2. Расчет и оценка эквивалентной дозы облучения вследствие попадания радионуклидов в организм 19
1.4. Индивидуальная эквивалентная доза ионизирующего облучения ... 24
1.5. Коллективная эквивалентная доза ионизирующего облучения ... 26
1.6. Концепция приемлемого риска и анализ соотношения польза-вред при воздействии ионизирующего облучения 29
1.7. Проблемы дозиметрии на загрязненных радионуклидами территориях ... 34
1.8. Теоретический анализ основных понятий и параметров современной радиоэкологии 37
1.9. Проблемы синергизма и антарктизма радиационного и химического фактора в исследованиях на модельной двухкамерной экосистеме ... 41

ЧАСТЬ 2. РАДИОЭМКОСТЬ И НАДЕЖНОСТЬ ЭКОСИСТЕМ

2.1. Исследование надежности растительных объектов радиобиологическими методами ... 48
 2.1.1. Основы теории надежности биосистем и ее применение в радиобиологии и экологии .. 48
 2.1.1.1. Принципы анализа и основные понятия надежности биологических систем ... 48
 2.1.1.2. Иерархические системы в биологии 51
2.1.1.3. Концепция надежности в радиобиологии многоклеточных систем .. 53
2.1.1.4. Модели радиационного поражения многоклеточного организма (на примере растений) 57
2.1.1.5. Результаты экспериментальных исследований и теоретического анализа ... 62
2.1.1.6. Проблемы количественной радиобиологии многоклеточных организмов 75
2.1.1.7. Математическая модель ростовой реакции корня растения после облучения при участии репопуляционного восстановления ... 79
2.1.1.8. Радиобиологические эффекты и системы надежности растений .. 83
2.1.1.8.1. Исследование радиобиологических реакций на организменном уровне интеграции спироделы многокоренной ... 83
2.1.1.8.2. Исследование радиобиологических реакций на уровне популяции растений Спироделы многокоренной 85
2.1.1.8.3. Исследование особенностей процесса старения на уровне популяции растений и влияние на этот процесс радиации .. 86
2.2. Принципы анализа надежности биологических объектов 93
2.3. Методы испытания надежности биологических систем 103
 2.3.1. Ускоренные испытания биологических систем 104
 2.3.2. Экспериментальные исследования на растениях Спироделы многокоренной ... 110
 2.3.3. Феноменологические и количественные характеристики радиационного поражения и восстановления меристемы у Спироделы многокоренной ... 114
 2.4. Особенности процесса старения у Спироделы многокоренной 121
2.5. Исследование и моделирование радиоемкости экосистем 122
 2.5.1. Введение в раздел ... 123
 2.5.2. Теория и модели радиоемкости разных типов экосистем 124
 2.5.3. Параметр радиоемкости, как опережающий показатель состояния биоты экосистем 127
 2.5.3.1. Теоретический анализ предлагаемого подхода 127
 2.5.3.2. Экспериментальная проверка возможности использования фактора радиоемкости, как опережающего параметра для оценки реакции биоты на действие различных поллютантов .. 128
 2.5.3.3. Исследование поведения параметров радиоемкости при действии на биоту различных стресс-факторов 130
 2.5.4. Заключение по разделу ... 132
2.6. Моделирование и оценка экологической емкости и надежности избранных экосистем в зоне влияния опасных производств ядерного цикла ... 132
 2.6.1. Применение метода оценки экологической емкости и радиоемкости к анализу ситуации на Восточном горнообогатительном комбинате (ВостГОК) .. 133
 2.6.2. Построение и анализ картосхем экологической емкости (надежности) территории и влияния на окружающую среду в зоне расположения действующих АЭС (Южно-Украинская, Хмельницкая, Запорожская) ... 137
2.7. Радиоэкологическая надежность склоновой экосистемы 145

ЧАСТЬ 3. ПРОБЛЕМЫ ЭКОЛОГИЧЕСКОГО НОРМИРОВАНИЯ . 164
 3.1. Радиоемкость разных типов экосистем и принципы их экологического нормирования 164
 3.1.1. Проблемы экологического нормирования экосистем . 165
 3.1.2. Оценка допустимых сбросов радионуклидов в пресноводном водоеме .. 166
 3.1.3. Оценка предельно-допустимых сбросов и складирования радионуклидов в склоновых экосистемах 169
 3.2. Экологическое нормирование радиационного фактора 173
 3.2.1. Зонирование дозового влияния на экосистемы 173
 3.3. Экологическое нормирование в озерной экосистеме 175
 3.3.1. Результаты моделирования допустимых сбросов в озерную экосистему ... 175
 3.3.2. Анализ и расчет допустимых сбросов радионуклидов в озеро .. 176
 3.4. Экологическое нормирование для склоновой экосистемы 178
 3.4.1. Оценка экологических нормативов на предельно допустимые сбросы и депонирование радионуклидов в склоновых экосистемах .. 179
 3.4.2. Рассчет и анализ допустимых сбросов радионуклидов в склоновой экосистеме .. 179
3.4.3. Расчет и анализ допустимых сбросов радионуклидов в лесной экосистеме .. 180
3.5. Экологическое нормирование в ландшафте методами аналитической ГИС (геоинформационной системы) технологии . 183
3.5.1. Фактор радиоемкости экосистемы ландшафта 183
3.5.2. Концепция трассеров в радиоэкологии 183
3.5.3. Исследованием радиоемкости ландшафтов 185
3.6. Контрмеры в радиоэкологии 189
3.6.1. Радиоэкологическая оценка эффективности контрмер ... 189
3.6.2. Контрмеры в условиях радиационных аварий 190
3.6.3. Принципы выбора контрмер 193
3.6.4. Сравнительный анализ контрмер во время ликвидации аварии на ЧАЭС .. 195
3.7. Проблема экологического нормирования в свете Чернобыльской аварии ... 198
3.8. Экологическое нормирование радиационного фактора. Проблемы и перспективы ... 204
3.9. Сравнение систем экологического нормирования по референтным видам биоты и по биоте с максимальным депонированием радионуклидов .. 208

ЧАСТЬ 4. ТЕОРЕТИЧЕСКАЯ РАДИОЭКОЛОГИЯ АГРОЭКОСИСТЕМ .. 212
4.1. Исследование и оценка надежности систем транспорта радионуклидов в локальной агроэкосистеме 212
4.1.1. Анализ проведенных исследований 212
4.2. Моделирование агроэкосистемы методами теории надежности .. 214
4.2.1. Описание и обсуждение полученных результатов 220
4.3. Оценка и сравнительный анализ радиоемкости и надежности локальных агроэкосистем, загрязненных цезием -137 и стронцием-90 .. 222
4.3.1. Введение в раздел .. 222
4.4. Проблемы надежности локальной агроэкосистемы 239
4.5. Оценка и повышение экологической безопасности агроэкосистемы на основе моделей надежности 239
4.5.1. Основные полученные результаты 241
4.5.2. Заключение по части 4 и выводы. (Моделирование агроэкосистемы методами теории надежности) 242

ЧАСТЬ 5. ОЦЕНКА И МОДЕЛИРОВАНИЕ ЭКОЛОГИЧЕСКИХ РИСКОВ ОТ РАДИАЦИИ ... 248
5.1. Риск и экологический риск 248
5.1.1. Определения риска .. 248
5.1.2. Опасность и риск .. 250
5.1.3. Развиваемость риска ... 251
5.1.4. Особенности экологического риска 254
5.2. «Общество риска» и особенности принятия рискованных решений ... 258
5.2.1. Социологическая теория "общества риска" 258
5.2.2. Основные теоретические сведения 262
5.3. Оценка и прогноз экологических рисков от радиационного воздействия на человека 266
5.3.1. Теоретические сведения .. 266
5.4. Теория радиоемкости и надежности при оценке экологических рисков в экосистемах 267
5.4.1. Теория и модели радиоемкости в современной радиоэкологии ... 268
5.4.2. Модель и параметры для оценки синергизма при действии комбинированных факторов 269
5.4.3. Моделирование и теоретический анализ радиоемкости ландшафтов ... 271
5.4.4. Исследование и оценка надежности и экологических рисков при транспорте радионуклидов в локальной агроэкосистеме .. 271
5.4.5. Оценка надежности и экологических рисков в избранных экосистемах ... 273
5.4.5.1. Надежность и формирование экологических рисков в зоне загрязнения экосистеме 273
5.4.6. Надежность и экологические риски в локальной агроэкосистеме .. 279
5.4.7. Надежность и экологические риски в экосистеме каскада Днепровских водохранилищ 283
5.5. Обсуждение описанных результатов и заключение по разделу .. 286
7.3.2. Радиоемкость и контрмеры на водных экосистемах .. 322
7.3.3. Фитодезактивация (ФД) радионуклид загрязненных почв. Проблемы и перспективы ... 325
7.3.3.1. Пути повышения эффективности фитодезактивации почв от 137Cs... 327
7.3.3.2. Модификация ФД через влияние на запас радионуклидов в почве .. 327
7.4. Перспективы и значение создания оптимальной системы контрмер по снижению дозовых нагрузок на население и биоту .. 328
7.4.1. Введение в раздел ... 328
7.4.2. Возможный вариант оптимальной системы контрмер по снижению дозовых нагрузок на население и биоту ... 330
7.4.3. Перспективы применения методов деконтаминации после аварии на ЧАЭС ... 332
7.4.3.1. Оценка эффективности технологии дезактивации почв с помощью “Turf-Cutter” ... 333
7.4.3.1.1. Оценка эффективности механической дезактивации почвы с помощью специальной машины для снятия тонкого слоя дерна (turf cutter) ... 334
7.4.3.1.2. Изучение возможного водного и микробиологического выщелачивания радионуклидов из загрязненной почвы ... 334
7.4.3.2. Оценка возможности создания дернины на супесчаных почвах полигона в 30-км зоне ЧАЭС .. 335
7.4.3.3. Применение turf-cutter на территории с. Милячи (Дубровицкий р-он, Ровенская обл.) .. 336
7.5. Перспективы применения turf-cutter на территории Украины .. 339
7.6. Сравнительный анализ эффективности некоторых контрмер, направленных на уменьшение негативных последствий действия загрязняющих веществ .. 340
7.6.1. Реализация на территории Украины некоторых эффективных контрмер ... 340
7.7. Заключение .. 341

ЧАСТЬ 8. НЕРЕШЕННЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ ОБЩЕЙ И ТЕОРЕТИЧЕСКОЙ РАДИОЭКОЛОГИИ .. 344

ЧАСТЬ 9. СОХРАНЕНИЕ НАДЕЖНОСТИ ЖИВЫХ ОРГАНИЗМОВ (ВМЕСТО ЗАКЛЮЧЕНИЯ) ОСНОВНЫЕ ВЫВОДЫ ИЗ ДАННОЙ КНИГИ .. 353
ЧАСТЬ 1.
ВВЕДЕНИЕ В ПРОБЛЕМЫ ТЕОРЕТИЧЕСКОЙ РАДИОЭКОЛОГИИ

1.1. Дозиметрические единицы в радиоэкологии

1.1.1. Основные дозиметрические единицы

Единицей активности радионуклида в Международной системе единиц (СИ) принято - беккерель (Бк); 1 Бк — это активность радионуклида, при которой происходит один распад атома за 1 с.

В практической радиоэкологии, особенно, для характеристики условий аварии, широко используют внесистемные единиции – кюри (1 Кн = 3,7x10ⁱ⁰ Бк). Соотношение между разными единицами дозы облучения и их производными приведены в таблице 1.1.

Таблица 1.1. Соотношение между единицами величин дозы ионизирующего излучения

<table>
<thead>
<tr>
<th>Величина, ее обозначение</th>
<th>Единица, обозначение</th>
<th>Соотношение между единицами</th>
</tr>
</thead>
<tbody>
<tr>
<td>Активность радионуклидов, A</td>
<td>Беккерель (Бк)</td>
<td>Кюри (Ки) 1 Кн = 3,7x10¹⁰ Бк</td>
</tr>
<tr>
<td>Поглощенная доза облучения, D</td>
<td>Грэй (Гр)</td>
<td>Рад (рад) 1 рад = 0,01 Гр</td>
</tr>
<tr>
<td>Мощность поглощенной дозы облучения, P</td>
<td>Грэй в секунду (Гр/с)</td>
<td>Рад в секунду (рад/с) 1 рад/с = 0,01 Гр/с</td>
</tr>
<tr>
<td>Эквивалентная доза облучения, Dэкв</td>
<td>Зиверт (Зв)</td>
<td>Бэр (бэр) 1 бэр = 0,01 Зв</td>
</tr>
<tr>
<td>Мощность эквивалентной дозы облучения, Pэкв</td>
<td>Зиверт в секунду (Зв/с)</td>
<td>Бэр за секунду (бэр/с) 1 бэр/с = 0,01 Зв/с</td>
</tr>
</tbody>
</table>

1.1.2. Производные единицы

При описании радиоэкологических процессов используют производные единицы для определения активности радионуклидов в воде, воздухе, почве и на поверхности разных сред.

Единицы удельной (1) и объемной (2) активности радионуклидов: 1) Бк/кт (Ки/кт); 2) Бк/л (Ки/л); Бк/м³ (Ки/м³); Бк/км² (Ки/км²).

Единицы поверхностной активности радионуклидов (плотность поверхностного радионуклидного загрязнения): Бк/км² (Ки/км²).

В практической радиоэкологии часто используют переводные коэффициенты для перерасчета поверхностной активности в объемную и наоборот. Для почвы принято рассчитывать активность радионуклидов в слое 20 см толщиной. Тогда при поверхностной активности 3,7x10⁻¹⁰ Бк/км² (1 Ки/км²) активность радионуклидов в объеме почвы можно вычислить по формуле [1]:

1 Бк/км² = 5x10⁻⁹ Бк/кг / ρ ,

где ρ — плотность почвы.

Эту формулу используют для, перепаханной после аварии, почвы и для почв, не пригодных для травяной и луговой растительности. Если же практически весь основной корнеобитаемый слой почвы составляет 5 см толщины, то для определения объемной активности почвы необходимо другое соотношение:

1 Бк/км³ = 2x10⁻⁸ Бк/кг / ρ .

Еще сложнее делать перерасчеты в случае выпадения радионуклидов на зеркало водоемов, из-за распределения радионуклидов по грунте и концентрирования в тонких отложениях. Для оценки активности донных отложений часто также используют такие единицы, как Бк/км³ (Ки/км³).

1.2. Коэффициенты накопления и перехода радионуклидов в экосистемах

Для характеристики перераспределения и миграции радионуклидов в экосистемах в радиоэкологии принято использовать коэффициенты накопления и перехода.

Коэффициент накопления (Кн) — термин, как правило, применяемый для организмов, которые обитают на поверхности, в грунте почвы, в воде. Коэффициент перехода (Кп) применяют также для наземных организмов или обитателей водоемов, когда идет речь о миграции радионуклидов по трофическим целям [1].

Эти коэффициенты демонстрируют, во сколько раз большей (или меньшей) может быть активность определенного радионуклида в элементах экосистемы (Ст — Бк/кт, в частности, в сухой массе...
растений) по сравнению с окружающей средой (С2 – Бк/кг почвы, где растут эти растения), и является специфической для радиоэкологии характеристикой экосистем и биоценозов.

Коэффициенты отображают часть радионуклидов, которые попадают из одного элемента экосистемы в другой. Для системы почва-растения – это отношение активности радионуклида в 1 кг воздушно-суходой биомассы растений (Сx) к его содержанию в 1 кг воздушно-суходой массы почвы (С2), на которой эти растения выращены, Бк/кг. В самом простом случае, эти коэффициенты вычисляют по формуле:

$$K_n = \frac{C_1}{C_2}$$ \hspace{1cm} (1.3)

Для характеристики выпадения радионуклидов на почву принято использовать понятие о поверхностной активности (плотность выпадения) радионуклидов, измеряемую в килобеккерах (корн) на км² (Ки/км²) почвы.

Известно, что сразу после выпадения радионуклиды сосредоточены только в поверхностном слое почвы, а затем медленно мигрируют в глубину почвенного слоя, в зону размещения корней растений. Активности радионуклидов в верхнем и ниже расположенных слоях почвы могут отличаться в десятки раз и больше (рис. 1.1.) [1].

![Рис. 1.1. Вертикальное распределение 90Sr в почвах разных видов: а) в дерново-подзолистой, б) в серой лесной, в) в черноземе (выщелоченном), в разные периоды после Кыштымской аварии (на БУРСе) (1 – после 5 лет, 2 – через 10 лет, 3 – через 25 лет).](image)

Поэтому в зависимости от перемещения радионуклидов в почвенном слое и глубины залегания основной массы корней, исследуемого вида растений, оценки Кн могут отличаться в десятки раз. По самым распространенным методикам расчета Кн, для спектрометрического или радиохимического исследования следует брать почву 20-санитметрового слоя, хорошо его перемешивать, а затем измерять удельную активность радионуклидов в нем. Такой способ очень удобен для сельскохозяйственных растений (зерновые и кормовые культуры), но не пригоден для кустарников и древесных пород, где глубина залегания корней может достигать нескольких метров. Для точной оценки Кн растений конкретного вида, при определенной ситуации радионуклидного загрязнения, нужно брать для исследования разные слои почвы: от нескольких сантиметров (для травяных культур) до нескольких метров (древесные растения) толщиной. Возможно, для того, чтобы замаскировать эти проблемы, в практической радиоэкологии используют другое определение коэффициента перехода:

$$K_n = \frac{C_1}{C_3}$$ \hspace{1cm} (1.4)

gде С1 – удельная активность радионуклидов в 1 кг воздушно-суходой массы растений, Бк/кг; С3 – поверхностная активность радионуклидов в 1 м² почвы, кБк/м².

Кн дает возможность усреднить ситуацию для больших территорий.

Рассмотрим этот случай на конкретном примере. На непаханом пастбище поверхностная активность радионуклидов, вследствие аварии на ЧАЭС составляла 18,5·10¹⁰ Бк/км² (5 Ки/км²) 137Cs. В первые годы после аварии весь 137Cs был сосредоточен в 2 - 5 см слое почвы, а корни кормовых трав достигали 20 см в глубину. На следующий год после аварии, когда воздушным загрязнением травы можно было пренебречь, удельная активность 137Cs в биомассе растений составила, например, 3,7 Бк/кг (1·10¹⁰ Ки/кг), а в 5 - сантиметровом слое почвы – 7,4·10⁸ Бк/кг (2·10⁷ Ки/кг). Отсюда по формуле (1.3):

$$K_n = 3,7 \text{ Бк/кг} / 7,4·10^8 \text{ Бк/кг} = 0,005.$$

На 30-й год после аварии можно было ожидать, что 137Cs способен распределиться в слое почвы на глубину до 20 см, а
биомассы корней, которые принимают участие в накоплении радионуклидов в растениях, увеличиться приблизительно в 4 раза. То есть средняя активность радионуклидов в почве за это время также могла бы уменьшиться приблизительно в 4 раза. В этом случае

\[K_n \]

имел бы такое же самое значение – 0,005. В этом расчете учитывали только долгоживущие радионуклиды, что дало возможность без труда учесть их распад. Не учитывали также возможности изменения подвижности и растворимости радионуклидов в почвенном растворе. Если вычислить \(K_n \) по формуле (1.4), то в первые годы после аварии он составлял:

\[K_n = 3,7 \text{ Бк/кг}/18,5 \text{ кБк/м}^2 = 0,2 \]

Через 30 лет после аварии, вследствие увеличения корневой массы многолетних растений, которая определяет накопление радионуклидов растениями, активность \(^{137}\text{Cs}\) в надземной биомассе должна вырасти в 4 раза. Однако с учетом разведения активности в почвенном слое (также приблизительно в 4 раза), изменений \(K_n \) не ожидалось. Таким образом, из приведенного упомянутого примера видно, что оба варианты коэффициентов перехода \(K_b \) и \(C \), аналитичны, однако между ними нет простого математического соотношения. Это связано, в частности, с трудностями расчета удельной активности радионуклидов в почве через отличия в удельной плотности различных типов почв. Правомерно использовать оба варианта расчета, в зависимости от задач исследования. Вместе с этим, нужно учитывать, что один из этих коэффициентов не заменяет другого. Практически это означает необходимость оценивать оба значения коэффициента перехода. В частности, \(K_n \) дает возможность оценить удельную активность радионуклидов, которые переходят из 1 кг почвы в 1 кг биомассы растений, а \(K_b \) – рассчитать удельную активность радионуклидов, которые переходят в 1 кг биомассы растений от 3,7·10^10 \text{ Бк/кг}^2 (1 Ки/км²) активности радионуклидов, которые выпали на поверхность этой территории. В практической радиоэкологии применяют также коэффициент выноса \((K_a) \) радионуклидов с биомассой. Для его вычисления можно воспользоваться такой формулой:

\[K_a = \frac{C \cdot B}{A} \tag{1.5} \]

gде \(C \) – удельная активность (концентрация) радионуклида в 1 кг биомассы растений - \text{Бк/кг}; \(B \) – урожай растений на 1 км² площади, \(A \) – поверхностная активность (плотность) радионуклидов, которые выброшены на территорию - \text{Бк/км}².

Коэффициенты накопления, как уже показано, отображают часть радионуклидов, которые переходят в единицу биомассы из единицы объема среды обитания и используются чаще всего в радиоэкологии водных экосистем по формуле (1.5.) Тут \(C_2 \) – объемная активность радионуклида в 1 л воды, \text{Бк/л}.

Коэффициент выноса радионуклидов в этом случае можно определить по той же самой формуле (1.5), где под \(B \) понимают биомассу гидробионтов в единице объема среды их проживания, а под \(A \) – активность радионуклидов, которые попали в эту самую единицу объема среды. При расчете \(K_a \) и \(K_b \), часто вставляет вопрос: как рассчитать массу биоты: исходя из массы сухого вещества или массы свежей пробы? Разные авторы используют различные способы расчета, и каждый отстаивает преимущество выбранного им способа. Наверное, при оценках возможно использовать тот или иной способ в зависимости от того, масса сухого вещества биоты, желательно учитывать, какой процент массы свежевзвешенной пробы она составляет.

Широко используется в радиоэкологии также коэффициент ветрового подъема, который рассчитывается по формуле (1.6.)

\[K_b = C_1 \left(\frac{\text{Бк/м}^3}{C_2 \left(\frac{\text{Бк/м}^3}{10} \right)} \right) \tag{1.6.} \]

gде \(C_1 \) (\text{Бк/м}³) активность данного радионуклида в 1м³ воздуха, над почвой поверхность активность которой равна \(C_2 \) (\text{Бк/м}³).

Размерность - \text{Кв} (\text{м}³) [2]. По табличным данным, эта величина варьирует от 10^{-12} для плотно закрытых поверхностей (заэффицированных поверхностей, и в домах), до 10^{-2} - для активно пылящих поверхностей (половые работы). Этот коэффициент необходим для расчета возможной радиоактивности воздуха над радионуклид загрязненными территориями и используется при оценках ингаляционных доз облучения людей.

1.2.3. Понятие критической группы населения

В случаях облучения больших популяций людей, особенно при авариях, целесообразно выделять критические группы населения [1, 3].

Критическая группа – это совокупность особей среди определенного контингента людей, которые по условиям проживания,
возраста или состоянием здоровья подвергаются наибольшему риску облучения. Это, прежде всего группа детей в возрасте до года. Другой критической группой может быть часть населения или персонал, которая получила наибольшую дозу облучения в ранний период аварии. Если основное влияние ионизирующего облучения на население реализуется в действиях радионуклидов йода, то критической можно считать группу детей и взрослых, которым не проводили йодную профилактику.

1.3. Модели оценки поглощенных доз облучения от разных источников

В дозиметрии разработаны и получены формулы для расчета поглощенных доз от точечных, плоских и объемных источников радиации разного размера. Способы и формулы расчета доз подробно описаны в справочной литературе. Ниже рассмотрены наиболее простые и точные способы расчета поглощенных доз облучения для людей, которые проживают на загрязненных радионуклидами территориях, то есть в условиях радиоэкологической аномалии.

1.3.1. Расчет и оценка поглощенной дозы при внешнем облучении

Возможны несколько способов расчета и оценки этой дозы для конкретного человека и определенной популяции в целом.

Наиболее простым и точным способом является оценка поглощенной дозы облучения по показаниям личного дозиметра, которые носят постоянно (конденсаторного, пленочного или ТЛД (термолюминесцентные детекторы) типа). Другой, более сложный способ – это оценка поглощенной дозы, которая получена вследствие внешнего облучения по данным внешней дозиметрии, фона гамма- и бета-облучения на территории передвижения, работы и отдыха людей. Тут учитывают дозу от облака, поверхности земли в начале аварии и в процессе ликвидации ее последствий etc. Простой способ расчета поглощенных доз при внешнем облучении предусматривает оценку средних значений мощности поглощенной дозы гамма облучения на территории пребывания людей и времени проживания. Для этого используют формулу для оценки дозы внешнего облучения (D_{в.о.}):

\[D_{в.о.} = P \cdot T. \]

(1.7)

где \(P \) – мощность поглощенной дозы облучения, Гр/час; \(T \) – время, час.

В случаях аварийных ситуаций (Чернобыльская авария) источниками внешнего облучения являлись - облако радиоактивных аэрозолей и частицы, дома, сооружения и почва после осаждения на них радионуклидов. Дома и сооружения на территории пребывания людей могут частично экранировать и снижать поглощенную дозу при внешнем облучении, в таких условиях принято использовать коэффициент экранирования домами (помещениями) – \(K_e \) (таблица 1.2.), что определяется соотношением мощности поглощенных доз облучения внутри помещения и вне его [2].

В расчетах средних показателей рекомендовано использовать значения \(K_e = 0,4 \). Коэффициент экранирования дает возможность учитывать при оценке поглощенной дозы облучения время пребывания людей в помещениях и на открытом воздухе.

Таблица 1.2. Коэффициенты экранирования ионизирующего облучения от разных источников домами (помещениями)

<table>
<thead>
<tr>
<th>Место нахождения сооружения</th>
<th>(K_e) в зависимости от мощности поглощенной дозы облучения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>От облака радиоактивных аэрозолей</td>
</tr>
<tr>
<td>На 1 м выше от уровня почвы (без экранирования)</td>
<td>1,0</td>
</tr>
<tr>
<td>Каменный дом</td>
<td>0,6</td>
</tr>
<tr>
<td>Небольшой многоэтажный дом:</td>
<td></td>
</tr>
<tr>
<td>подвал</td>
<td>-</td>
</tr>
<tr>
<td>Земляной пол или первый этаж</td>
<td>-</td>
</tr>
<tr>
<td>Большой многоэтажный дом:</td>
<td></td>
</tr>
<tr>
<td>подвал</td>
<td>0,2</td>
</tr>
<tr>
<td>верхний этаж</td>
<td>-</td>
</tr>
</tbody>
</table>
В самых точных расчетах этой дозы для каждой из групп людей (маленькие дети, подростки, работающие взрослые, и пенсионеры) определяют приближительное время пребывания в помещениях и на улице. Зная мощность поглощенной дозы от облака и почвы на разных участках территории, время пребывания на улице и в помещениях и коэффициенты экранирования, можно в случае внешнего облучения оценить поглощенную дозу облучения для каждой из групп людей, а также для разных зон их проживания и пребывания.

1.3.2. Расчет и оценка эквивалентной дозы облучения вследствие попадания радионуклидов в организм

Для этого используют принятые Международной комиссией радиационной защиты (МКРЗ) таблицы дозовых цен (или дозовых коэффициентов) разных радионуклидов – поглощенных доз вследствие попадания определенного радионуклида активностью 1 Бк в организм человека при дыхании или проглатывании. Эти таблицы разработаны по данным аварий, взрывов и результатам наблюдений за рентгенологами и радиотерапевтами; они постоянно уточняются и дополняются. Величины этих дозовых цен приведены в табл. 1.3.

Таблица 1.3. Дозовые цены разных радионуклидов в зависимости от путей попадания их в организм [1, 3]

<table>
<thead>
<tr>
<th>Радионуклид</th>
<th>Дозовая цена, Зв/Бк (в случае проглатывания)</th>
<th>Дозовая цена, Зв/Бк (в случае вдыхания)</th>
<th>Радионуклид</th>
<th>Дозовая цена, Зв/Бк (в случае проглатывания)</th>
<th>Дозовая цена, Зв/Бк (в случае вдыхания)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90Sr</td>
<td>4·10⁻⁹</td>
<td>3·10⁻⁷</td>
<td>144Ce</td>
<td>1·10⁻⁸</td>
<td>4·10⁻⁸</td>
</tr>
<tr>
<td>90Zr</td>
<td>1·10⁻⁹</td>
<td>4·10⁻⁹</td>
<td>238Pu</td>
<td>5·10⁻⁷</td>
<td>7·10⁻⁵</td>
</tr>
<tr>
<td>131I</td>
<td>2·10⁻⁸</td>
<td>2.5·10⁻⁸</td>
<td>239Pu</td>
<td>7·10⁻⁷</td>
<td>7·10⁻⁵</td>
</tr>
<tr>
<td>134Cs</td>
<td>2·10⁻⁸</td>
<td>1·10⁻⁹</td>
<td>248Pu</td>
<td>5·10⁻⁷</td>
<td>7·10⁻⁵</td>
</tr>
<tr>
<td>135Cs</td>
<td>3·10⁻⁹</td>
<td>2·10⁻⁸</td>
<td>241Pu</td>
<td>1·10⁻⁸</td>
<td>1·10⁻⁵</td>
</tr>
<tr>
<td>137Cs</td>
<td>2·10⁻⁸</td>
<td>1·10⁻⁹</td>
<td>242Pu</td>
<td>5·10⁻⁷</td>
<td>7·10⁻⁵</td>
</tr>
<tr>
<td>141Ce</td>
<td>1·10⁻⁹</td>
<td>2·10⁻⁹</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*В скобках приведено время в часах

Из табличных показателей выходит, что для большинства радионуклидов дозовая цена в случае вдыхания больше, чем при проглатывании. Особенно велика разница (в 100 раз) для трансурановых элементов (ТУЭ), которые для ингаляционной эквивалентной дозы облучения являются определяющими.

Расчет и оценка ингаляционной эквивалентной дозы облучения потребуют знаний или оценки активности (содержания) радионуклидов во вдыхаемом воздухе за любой определенный период жизни на загрязненной территории или работы в условиях загрязнения. Если это авария, тогда важно оценивать активность радионуклидов в воздухе, помещениях и на улице для разных ее этапов. Необходимо также знать объем потребляемого человеком (ребенком и взрослым) воздуха в разных ситуациях: на работе, во время отдыха и т.д. (см. табл. 1.4).

Таблица 1.4. Среднее суточное количество воздуха, вдыхаемого взрослыми и детьми при разных условиях [2]

<table>
<thead>
<tr>
<th>Условия</th>
<th>Мужчина</th>
<th>Женщина</th>
<th>Ребенок 10 лет</th>
<th>Ребенок до 1 года</th>
<th>Новорожденный</th>
</tr>
</thead>
<tbody>
<tr>
<td>Состояние покоя</td>
<td>3,6 (8)</td>
<td>2,9 (8)</td>
<td>2,3 (8)</td>
<td>1,3 (14)</td>
<td>0,69 (23)</td>
</tr>
<tr>
<td>Незначительная физическая нагрузка (легкий труд)</td>
<td>9,6 (8)</td>
<td>9,1 (8)</td>
<td>6,24 (8)</td>
<td>2,5 (10)</td>
<td>0,09 (1)</td>
</tr>
<tr>
<td>Профессиональный труд</td>
<td>9,6 (8)</td>
<td>9,1 (8)</td>
<td>6,24 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего за сутки</td>
<td>23</td>
<td>21</td>
<td>15</td>
<td>3,8</td>
<td>0,8</td>
</tr>
<tr>
<td>В среднем за год жизни</td>
<td>9200</td>
<td>8400</td>
<td>6000</td>
<td>1520</td>
<td></td>
</tr>
</tbody>
</table>

Зная активность определенного радионуклида во вдыхаемом воздухе на протяжении года, его годовое поступление ингаляционным путем (D_{инс}) в организм взрослых и детей можно вычислить по формуле:

$$D_{инс} = \Sigma D_i \cdot RH_i$$, (1.8)
где ΔP_i — дозовая цена определенного (i-го) радионуклида; PH_i — его годовое поступление в организм человека с учетом аварийной и поставарийной динамики выброса и поступления в органы дыхания.

Такой расчет дает возможность определять годовую ингаляционную эквивалентную дозу облучения для взрослых и детей, которые проживают на определенной территории. Активность радионуклидов во вдыхаемом воздухе можно оценить путем прямого измерения или рассчитать от активности радионуклидов в почве и на поверхности дорог, в домах и в других объектах, используя соответствующие коэффициенты ветрового подъема радионуклидов.

Расчет и оценку эквивалентной дозы облучения вследствие употребления воды и пищи, которые загрязнены радионуклидами, можно проводить несколькими путями. Дозы для конкретных особей могут быть рассчитаны по активности 137Cs, который поступает в организм с продуктами питания: ее определяют по показателям СИЧ (счетчик излучения человека). Следует определить, что СИЧ не дает сведений об активности в организме человека других радионуклидов (90Sr, 239Pu и т.д.), а активность 137Cs может существенно изменяться в организме человека, даже на протяжении суток.

Другой путь расчета эквивалентной пищевой дозы базируется на средних оценках активности радионуклидов в продуктах питания человека и в воде, по которым, исходя из рациона, оценивают годовое поступление радионуклидов в организм.

Вычисляют эту дозу облучения по формуле:

$$ D_{ni} = \Delta P_i \cdot PH_i, \quad (1.9) $$

где D_{ni} — индивидуальная пищевая доза от определенного i-го радионуклида; ΔP_i — дозовая цена определенного (i-го) радионуклида в случае проглатывания; PH_i — суммарное годовое поступление радионуклида в организм человека с продуктами питания.

Как и в случае оценки ингаляционной эквивалентной дозы, суммируют эквивалентные дозы от всех радионуклидов, которые обнаруживаются в воздухе и/или в продуктах питания. После Чернобыльской аварии (на 7-8-ой год) наблюдалось наличие в воздухе 137Cs, 90Sr, 144Ce, 106Ru, 239Pu; в пищевых продуктах — 137Cs, 90Sr, 144Ce, 106Ru. На 15-16-й год после аварии и в дальнейшем остаются в воздухе практически только 137Cs, 90Sr и ТУЭ (трансурановые элементы). А в пище останутся практически только 137Cs и 90Sr. Третий путь расчета используют, если нет систематических данных об активности радионуклидов в продуктах питания и воде. В этом случае с помощью камерных моделей (стационарных и динамических) рассчитывают активность радионуклидов в продуктах питания, исходя из активности радионуклидов на загрязненных сельскохозяйственных угодьях, а по этим показателям — в загрязненном мане, молоке и других продуктах питания. Далее используют эту же самую формулу (1.6) для расчета годовой полукововой эквивалентной дозы от употребления местных продуктов питания. (Доза называется полукововой, потому что в значениях ДЦ — дозовых цен — учтен полукововой срок действия радионуклидов на человека до их выведения из организма). Этот метод малопригоден в случае оценки доз для конкретных людей, но вполне оправдан, когда нужно оценить средние индивидуальные и коллективные эквивалентные дозы облучения для популяции населения, которая проживает на определенной территории.

Как пример, приведем приблиźительный расчет доз для населения г. Киева. В среднем увеличение природного фона облучения вследствие Чернобыльской аварии в городе составляет 0,05-0,1 мкГр/час (5-10 мкрад/ч). Исходя из этого, годовую эквивалентную дозу при внешнем облучении для жителей Киева, можно вычислить простым умножением:

$$ D_{\text{внеш}} = 0,1 \text{мкГр/час} \cdot 24 \cdot 365 \approx 0,001 \text{Зв/год} $$

Для расчета ингаляционной эквивалентной дозы облучения обратимся к табл. 1.3. Из данных таблицы видно, что основными дозообразующими радионуклидами для этой составляющей дозы являются ТУЭ — 239Pu и др. Вклад других радионуклидов в ингаляционную эквивалентную дозу настолько мал, что им можно пренебречь. В среднем, консервативно, по городу, в первые годы после аварии, уровень ТУЭ на поверхности почвы составляет 7,4·108 Бк/км2 (0,02 Ки/км2), или 740 Бк/м3 (2·10$^{-4}$ Ки/м3). Коэффициент вторичного ветрового подъема радионуклидов (см. формулу 1.6) в городе через 29 лет после аварии можно консервативно оценить в 10$^{-7}$ м3. Тогда среднее содержание ТУЭ в воздухе города (C_e) можно вычислить по формуле:

$$ C_e = 740 \text{Бк/м}^3 \cdot 10^{-7} \text{м}^3 = 7,4 \cdot 10^{-8} \text{Бк/м}^3.$$
Вместе пищевая доза может составить около 0,0015 Зв/год.
Таким образом, суммарная эквивалентная доза облучения от двух основных дозообразующих радионуклидов может составить около 0,0015 Зв/год (0,15 бэр/год). Вследствие использования для оценок радиационной ситуации, которые обычно не отвечает реальной экономической ситуации (не содержит, например 400 л молока и/или 70 кг мяса и характеризуется перевесом мучных продуктов), поэтому реальные дозы обычно в 3-5 раз меньше.

Суммируя все три основных пути формирования эквивалентной дозы облучения, можно вычислить приближенную среднюю индивидуальную эквивалентную дозу облучения ($D_{обшл}$) для жителя Киева, составит: $D_{обшл}=0,001+0,0002+0,0015 = 0,0027$ Зв/год (или 0,27 бэр/год).

Рассчитанная доза является небольшой, однако существует вероятность превышения ее в 2-3 раза. В то же время допустимой годовой дозой дополнительного облучения населения на этот период после аварии, не должен превышать 0,001 Зв/год (1 мЗв/год). Этот пример приведен нами для иллюстрации метода приближенного расчета дозы облучения.

Часто встает вопрос, какой может быть эквивалентная доза облучения вследствие употребления особенно загрязненных продуктов, например грибов, в большом количестве. Допустим, что человек употребляет много (200 кг/год) грибов, собранных на Полесье Украины, с удельной активностью 137Cs около 3,7×103 Бк/кг (107 Кк/кг). По приведенным выше формулам, годовая полугодовая эквивалентная доза для такого человека составит около 0,01 Зв (1 бэр). Много это или мало? Известно, что каких-либо явных отклонений в состоянии здоровья при таких дозах для человека практически не наблюдалось. Оснований для беспокойства, так что такая доза даёт и может заметно превышать риск заболеваний по сравнению с известным спонтанным уровнем, как правило, нет.

1.4. Индивидуальная эквивалентная доза ионизирующего облучения

Проблема оценки индивидуальной годовой средней эквивалентной дозы облучения для людей, которые проживают на загрязненной радионуклидами территории, сводится практически к расчету оценке всех трех составляющих дозы.

Таблица 1.5. Годовая удельная (объемная) активность радионуклидов, обусловленная их поступлением в организм с продуктами питания и водой для жителей Украины (ДУ 2006) [4]

<table>
<thead>
<tr>
<th>Продукт питания</th>
<th>Рацион (кг. л) в год</th>
<th>ДР-2006</th>
<th>Годовое поступление радионуклидов (Бк)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>137Cs Бк/кг/л</td>
<td>90Sr Бк/кг/л</td>
<td>137Cs Бк/кг/л</td>
</tr>
<tr>
<td>Молоко</td>
<td>400</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Мясо</td>
<td>70</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>Рыба</td>
<td>16</td>
<td>150</td>
<td>35</td>
</tr>
<tr>
<td>Овощи</td>
<td>124</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Хлеб</td>
<td>130</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Вода</td>
<td>550</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

По данным таблицы можно определить годовое поступление ($D_{н}$) 137Cs и 90Sr с продуктами питания по их активности, а на основе этих показателей – годовые дозовые нагрузки:

$D_{н} (^{137}$Cs$) = 67540 \, Бк/год \cdot 2 \cdot 10^{-8} \, Зв/Бк \approx 0,0014 \, Зв/год;$

$D_{н} (^{90}$Sr$) = 15590 \, Бк/год \cdot 4 \cdot 10^{-9} \, Зв/Бк \approx 0,00006 \, Зв/год.$

23
1. Эквивалентную дозу от внешних источников гамма-облучения (стен, деревьев, почвы и других загрязненных объектов) можно оценить по показаниям индивидуального дозиметра или расчетом по гамма-фону в помещениях, на улице и в других местах пребывания.

2. Эквивалентную дозу облучения вследствие употребления продуктов питания (пищевая доза) и воды оценивают специально, путем анализа или прогноза активности радионуклидов в продуктах питания и воде, а потом пересчитывают с помощью дозиметрических моделей в годовую дозу. Идеально было бы рассчитывать содержание радионуклидов в годовом рационе питания конкретного человека, а потом пересчитывать в дозу облучения. Однако практически это трудно осуществить, поэтому чаще используют другой метод – регулярно проверяют на активность (содержание) радионуклидов в организме человека с помощью прибора СИЧ, а потом пересчитывают по формулам в ожидаемую дозу от 137Cs.

3. Ингалиционную эквивалентную дозу облучения оценивают по активности радионуклидов во вдыхаемом воздухе, а потом с помощью простых формул или сложных моделей рассчитывают годовую ожидаемую эквивалентную дозу, которая формируется в месте проживания людей ингаляционным путем.

Понятно, что такие оценки индивидуальных эквивалентных доз облучения для конкретных людей могут быть практически сделаны и делаются для очень ограниченного контингента. Это специалисты, которые работают на АЭС и других ядерных предприятиях, ликвидаторы последствий аварий, рентгенологи, радиотерапевты и т.д. Такие небольшие группы людей длительное время пребывают под дозиметрическим надзором, имеют детальные оценки дозовых нагрузок за каждый день работы в условиях облучения, согласно которым можно достаточно точно оценить полученные дозы, а по их личным показателям состояния здоровья попытаться определить возможные последствия. Относительно таких людей, при потребности, могут быть применены профилактические и терапевтические меры для уменьшения или устранения последствий.

Подобный алгоритм невозможно применить к большим популяциям людей, которые проживают на загрязненных территориях и в районе радиоактивных аномалий, по таким причинам:
– численности популяций;
– невозможности точно оценить гамма-фон, содержание радионуклидов в продуктах питания, воде и в воздухе;
– отсутствия данных о состоянии здоровья больших групп населения (взрослых и детей) в динамике и невозможности определить для каждого из них последствия тех или иных доз облучения.

Последний аспект следует рассмотреть детальнее. Из радиобиологических исследований известно, что особи популяции одного вида могут существенно отличаться по радиочувствительности. В основе этих отличий лежат генетические, физиологические, возрастные и другие факторы. Проявляются эти отличия в экспериментах с острым облучением, но вероятно они имеют место и в случае хронического облучения и вследствие влияния радионуклидов. Если популяция людей, которая проживает на определенной территории, может получить по оценкам, среднюю эквивалентную дозу облучения в 0,1 зв (10 бэр) на год, то в этой реальной популяции могут быть группы людей, которые получили только дозу в 0,01 зв (1 бэр), а для другой части населения полученная доза может составить 1 зв (100 бэр). Такая доза может привести к развитию хронической лучевой болезни, что требует применения серьезных медицинских мер.

1.5. Коллективная эквивалентная доза ионизирующего облучения

Для оценки общей опасности радиоэкологических ситуаций для больших популяций населения введено понятие о коллективной эквивалентной дозе облучения. Формально определение коллективной дозы относительно простое. Сумму популяции населения N_i, которая проживает на загрязненной радиоактивной территории, можно поделить на несколько групп i с численностью населения в группе N_i, каждая из которых характеризуется средней эквивалентной дозой облучения (D_i). Коллективная эквивалентная доза облучения для популяции в целом составит сумму произведений N_iD_i. Тогда формула оценки коллективной дозы (D_{kol}) будет такой (1.10):

$$D_{kol} = \sum_{i=1}^{N} N_i \cdot D_i \text{ (чел.-Зв, или чел.-бэр)} \ (1.10)$$
Наверное, нецелесообразно оценивать коллективную эквивалентную дозу для малых популяций. Так, доза 10 чел.-Зв (1000 чел.-бр) для 10 или даже 100 человек не имеет смысла – она слишком велика. Тут все решается по оценкам индивидуальных доз облучения. Более приемлемо понятие “коллективная доза” для популяции в 1000 или 10000 человек и больше. Вместе с тем уровень коллективной эквивалентной дозы облучения больших популяций населения (при небольших индивидуальных дозах – 0,01 Зв, или 1 бэр и меньше) дает возможность оценивать ситуацию в целом, сравнивать ее с другими регионами, следить за изменением общей радиоэкологической ситуации в регионе, а также определять эффективность тех или иных предлагаемых или использованных контрмер любого масштаба и отбирать среди них оптимальные. В частности метод оценки коллективных эквивалентных доз облучения широко используют для оценки качества и эффективности работы АЭС. Чем ниже “затраты” на ремонтные операции и другие работы на АЭС, тем выше качество работы самой станции и ее персонала. Рассчитанные коллективные эквивалентные дозы, полученные вследствие аварий, можно сравнивать с коллективными дозами от других искусственных и природных источников излучений. Такую сравнительную характеристику, по данным Комиссии по радиоактивным источникам (НКАДАР ООН) за 1945-1992 гг., приведены в таблице 1.6.

<table>
<thead>
<tr>
<th>Источник(и)</th>
<th>Облучение</th>
<th>Коллективная эквивалентная доза млн.чел.-Зв (чел.-бр)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Природные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Облучение в медицинской практике:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- диагностика</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- лучевая терапия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ядерные военные испытания в атмосфере</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ядерная Энергетика</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Постоянное</td>
<td></td>
<td>500 (50000)</td>
</tr>
<tr>
<td>На протяжении 50 лет</td>
<td></td>
<td>650 (65000)</td>
</tr>
<tr>
<td>То же самое</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Комбинированное</td>
<td></td>
<td>90 (9000)</td>
</tr>
<tr>
<td>75 (7500)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 (3000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Постоянно</td>
<td></td>
<td>2 (200)</td>
</tr>
<tr>
<td>На протяжении 50 лет</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Радиационные аварии</th>
<th>Обобщение данных об авариях</th>
</tr>
</thead>
<tbody>
<tr>
<td>Профессиональное облучение:</td>
<td>Постоянно На протяжении 50 лет</td>
</tr>
<tr>
<td>- медицинские работники</td>
<td>0,04 (4)</td>
</tr>
<tr>
<td>- работники ядерной энергетики</td>
<td>0,045 (4,5)</td>
</tr>
<tr>
<td>- работники промышленных предприятий</td>
<td>0,04 (4)</td>
</tr>
<tr>
<td>- работники неурановых шахт</td>
<td>0,04 (4)</td>
</tr>
<tr>
<td>- в целом представители всех профессий</td>
<td>0,04 (4)</td>
</tr>
</tbody>
</table>

Из данных таблицы 1.6 вытекает, что основная коллективная эквивалентная доза облучения для всего человечества составляют природные источники облучения; далее – медицинские процедуры, глобальные выпадения после ядерных испытаний; и на последнем месте – аварии на ядерных предприятиях. Облучение от всех вместе взятых искусственных источников за 50 лет составило около 30 % коллективной эквивалентной дозы, обусловленной природными источниками. Средние индивидуальные эквивалентные дозы облучения от искусственных источников (медицинские процедуры, радиационные аварии, ядерная энергетика и т.д.) для отдельных групп населения и профессионалов, могут заметно превышать средние эквивалентные дозы от природного фона (около 0,13 Зв/год или 1,3 бэр/год). Часть облучения вследствие ядерных аварий составляет при этом около 0,5 % природного фона в среднем на планете. Для регионов Украины, Беларуси и России, которые пострадали вследствие Чернобыльской аварии, эти показатели понятно, выше. Приведенные результаты свидетельствуют о двусторонности применения понятия “коллективная доза”. С одной стороны, чрезвычайно высокие показатели коллективной эквивалентной дозы от природных источников облучения, с другой – относительно малые значения этих доз при радиационных авариях. Тут определяющую роль играют уровни индивидуальных, а не коллективных доз. Так вследствие Чернобыльской аварии жители загрязненных радионуклидами территорий Украины, как минимум, дополнительно испытывают влияние облучения дозой приблизительно 0,01 Зв/год (1 год, 1 Зв = 100 мЗв).
мер (1-10)·10^{-3} Зв/год). Большие, что означает удвоение средней индивидуальной эквивалентной дозы по сравнению с природным фоновым уровнем. При эквивалентных дозах 0,01-0,02 Зв/год (1-2 мЗв/год) влияния на здоровье отдельных людей и популяций не обнаружено. Исключение составляют отдельные контингенты населения: ликвидаторы, эвакуированные из 30-километровой зоны ЧАЭС (особенно дети) и другие критические группы населения, которые получили дозу 0,05-0,1 Зв/год (5-10 мЗв/год) и больше. Можно сделать общий вывод, что медицинские терапевтические и профилактические усилия следует направить на критические группы населения, опираясь на показатели индивидуальной, а не коллективной дозы, и состояния их здоровья.

Критерий оценки коллективной эквивалентной дозы облучения — инструмент для общей характеристики ситуации в регионе, для выбора и сравнения эффективности контрмер и т.d. Эти оценки и расчеты коллективной дозы имеют экспертный характер и используются при расчетах соотношения польза-вред. Анализ соотношения польза-вред применяют для оценки качества и эффективности работы ядерного предприятия, выбора и оптимизации контрмер. Расчеты соотношения польза-вред базируются на оценке индивидуального и коллективного риска.

1.6. Концепция приемлемого риска и анализ соотношения польза-вред при воздействии нонионизирующего облучения

Любое производство и технология формируют свою степень риска смерти занятых в них людей, который оценивают за год работы в данной отрасли. Средние показатели риска смерти для работников промышленности США и Великобритании приведены в таблице 1.7.

Определим некоторые другие важные оценки риска. Так, риск смерти человека обусловленный эндогенными факторами, такими как заболевания, старение, оценивают у 10^{-2} (это означает риск смерти одного человека из ста в среднем за год); факторами среды проживания, катастрофами и другими экстремальными ситуациями – 10^{-5}; курение – 5·10^{-4} в год и т.d. Исходя из этих представлений и оценок, показатель усредненного социально приемлемого риска для высокоразвитых стран составляет 5·10^{-4} в год. Это цена, какую человечество вынуждено и готово платить за использование технологий, энергии и за комфорт.

<table>
<thead>
<tr>
<th>Таблица 1.7. Средние годовые показатели риска смерти для работников промышленности США и Великобритании [3]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Вид производства (промышленности)</td>
<td>Риск смерти в расчете на одного человека, ус. ед.</td>
</tr>
<tr>
<td>Производство горячего газа</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Углекоксование и вулканизация</td>
<td>(1-10)·10^{-3}</td>
</tr>
<tr>
<td>Рыболовство</td>
<td>1,2·10^{-3}</td>
</tr>
<tr>
<td>Добыча каменного угля</td>
<td>(4-12)·10^{-4}</td>
</tr>
<tr>
<td>Гончарное и керамическое производство</td>
<td>5·10^{-3}</td>
</tr>
<tr>
<td>Строительство</td>
<td>1,2·10^{-3}</td>
</tr>
<tr>
<td>Обрабатывающая промышленность</td>
<td>(8-12)·10^{-3}</td>
</tr>
<tr>
<td>Текстильная, бумажная, пищевая, печатная промышленность</td>
<td>(1-10)·10^{-3}</td>
</tr>
<tr>
<td>Швейная, обувная промышленность</td>
<td>(1-10)·10^{-6}</td>
</tr>
<tr>
<td>Другие виды промышленности США, Великобритании</td>
<td>2,5·10^{-4}</td>
</tr>
</tbody>
</table>

На основе многочисленных радиобиологических исследований, проведенных среди рентгенологов и особей, которые оказались под влиянием значительных доз облучения, вследствие радиационных аварий и бомбардировок Хиросимы и Нагасаки, были сделаны оценки риска развития опухолей в отдельных органах и тканях в расчете на эквивалентную дозу 0,01 Зв (1 мЗв) в год, приведены в (таблице 1.8).

<table>
<thead>
<tr>
<th>Таблица 1.8. Риски и вероятности образования опухолей из расчета на эквивалентную дозу облучения 0,01 Зв/год (1 мЗв/год) [3]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Облученный орган (ткань)</td>
<td>Риск (вероятность) развития опухолей, ус. ед.</td>
</tr>
<tr>
<td>Желудок</td>
<td>1,1·10^{-4}</td>
</tr>
<tr>
<td>Красный костный мозг</td>
<td>5·10^{-3}</td>
</tr>
<tr>
<td>Легкие</td>
<td>2,5·10^{-3}</td>
</tr>
<tr>
<td>Желтый (жижевой) костный мозг</td>
<td>5·10^{-5}</td>
</tr>
<tr>
<td>Трубчатых костей</td>
<td>8·10^{-5}</td>
</tr>
<tr>
<td>Щитовидная железа</td>
<td>2,5·10^{-4}</td>
</tr>
<tr>
<td>Другие органы и ткани</td>
<td>5·10^{-4}</td>
</tr>
<tr>
<td>В целом для всех органов</td>
<td>5·10^{-4}</td>
</tr>
</tbody>
</table>
То есть, риск образования опухолей, или соматический риск, для населения из расчета на 0,01 Зв (1 бэр) оценивают в 5\times10^{-4}. Аналогично оценивают и риск возникновения разных генетических аномалий у потомков облученных родителей. Как показали исследования, этот показатель в расчете на эквивалентную дозу 0,01 Зв (1 бэр) составляет не более чем 10^{-4} и не превышает 0,1-0,2% от природного спонтанного уровня генетических аномалий. Очевидно, что этот риск практически не повышает спонтанный уровень генетических заболеваний. Тогда общий риск для каждого облученного человека, вследствие влияния облучения в дозе 0,01 Зв (1 бэр) составляет 6\times10^{-7}, что соответствует социально приемлемому риску для всего населения.

По нашем расчетам, коллективная эквивалентная доза облучения для территории Украины, загрязненной радионуклидами вследствие аварии на ЧАЭС, составляет не менее 2\times10^{-4} человеко-Зв (2\times10^{-6} человеко-бэр) в год. Такой общий прогноз ситуации свидетельствует, что для популяции населения Украины в зоне влияния аварии (30 млн. человек) годовые потери от облучения могут увеличить природную смертность на 1200 человек. Природная смертность для этой популяции составляет 300 тыс. человек в год. Таким образом, чернобыльское "увеличение" составляет 0,03 % к природной смертности, однако оценить этот показатель со статистической вероятностью трудно.

Конечно, для отдельных регионов севера Украины при значительных индивидуальных дозах облучения (0,01 Зв и больше) эти оценки будут заметными и потребуют серьезных медицинских контрмер.

В докладе НКАДАР ООН (1988 г.) по данным обследования населения Японии подчеркивается, что оценка убытка, которую получают умножением коэффициента риска 6\times10^{-4} из расчета на 0,01 Зв/год (1 бэр/год) на соответствующую эквивалентную коллективную дозу дает ожидаемое количество случаев смерти от рака в облученной популяции численностью 1000 человек. Если коллективная эквивалентная доза составляет только несколько десятков человеко-зверьи, или сотен человеко-бэр, (индивидуальная доза 0,01 Зв, или 1 бэр в год, и меньше), то, вероятнее всего, дополнительных летальных случаев не будет. Для основной массы населения Украины, когда индивидуальная эквивалентная доза облучения не превышает 0,001 Зв/год, или 0,1 бэр/год (кроме критических групп населения), не следует ожидать заметного увеличения количества летальных случаев вследствие облучения. При больших индивидуальных дозах облучения 0,01 - 0,1 Зв/год, возможно статистически достоверное увеличение количества летальных случаев вследствие облучения.

Таким образом, формальный расчет коллективной эквивалентной дозы облучения недостаточен, и нужны оценки индивидуальных доз. Подобные случаи возможны, как правило, только для критических групп – населения загрязненных районов, населения эвакуированного из 30-километровой зоны ЧАЭС, и ликвидаторов последствий аварии. Трудно, почти невозможно, определить, для кого из конкретных людей эта доза облучения может иметь значение. Из приведенных примеров, четко прослеживаются принципиальные отличия в назначении и применении для оценки радиоэкологических ситуаций таких показателей, как индивидуальная и коллективная эквивалентная дозы облучения. Критерий оценки индивидуальной дозы особенно важно, применять для малых популяций населения или для профессионалов, которые получают за год облучение дозой 0,05-0,1 Зв (5-10 бэр). Для таких случаев целесообразно применять профилактические и терапевтические медицинские контрмеры. Если популяция достигает 1000 человек и больше, а средняя доза составляет 0,01 Зв за год и меньше, критерий коллективной эквивалентной дозы целесообразно использовать для оценки общей радиоэкологической ситуации. Критерий коллективной эквивалентной дозы особенно приемлем для выбора оптимальных общерегиональных контрмер, которые могли бы в случае необходимости, заметно уменьшить эту дозу на всю популяцию населения.

В мировой практике при выборе контрмер в определенных радиоэкологических ситуациях принято оценивать соотношение польза-вред. Вред складывается из экономических оценок суммы затрат на определенную меру или контрмеру (эвакуация, контроль продуктов питания и т.п.) и оценки социального вреда. Оцениваются эффективности (полезности) контрмеры базируется на расчете ожидаемого, вследствие его применения, уменьшения (экономии) коллективной дозы и стоимости этой экономии.

Для определения стоимости экономии коллективной эквивалентной дозы используют стоимость человеко-зверя (человеко-бэра). В зависимости от уровня развития страны эта цена является разной, и чем выше уровень развития технологии, а
соответственно и вклад каждого человека в национальный доход, тем выше стоимость 1 чел.-Зв (1 чел.-бэр). Например, в развитых странах Европы и США минимальная стоимость 0,01 чел.-Зв (1 чел.-бэр) составляет 8-100 дол. США. Для Украины в законе о радиационной безопасности практически введена цена за человека-зиверт в 4000 долларов США. Этот показатель можно использовать для предварительных оценок и экспертов определенных контрмер, способов защиты, качества работы определенных ядерных предприятий, АЭС, захоронений радиоактивных отходов и в других случаях. Стоимость 1 чел.-Зв (1 чел.-бэр) для профессионалов может, отличиться в 100 раз (то есть колебаться от 800 до 8000 дол. США) в зависимости от уровня индивидуальной дозы для профессионалов. Если индивидуальная доза меньше чем 0,01 Зв/год (1 бэр/год), то для населения Украины принимают стоимость в 4000 дол. США за человека-Зв, а при индивидуальных дозах в 0,03-0,05 Зв/год (3-5 бэр/год) цена 1 чел.-Зв в оценках стоимость может достигать за человека-Зв 8000 долларов США.

Эффективность способов защиты и контрмер и их стоимость зависят от средней эквивалентной дозы облучения. На рисунке 1.2 показано, как экспоненциально возрастают эффективность способов защиты и контрмер с увеличением этой дозы и стоимость их с уменьшением средней индивидуальной дозы облучения.

![Рис. 1.2. Зависимость эффективности защиты (1) и стоимости (2) от уровня средней индивидуальной эквивалентной дозы облучения в расчете на единицу дозы облучения (3 – суммарная кривая).](image)

Место пересечения этих кривых соответствует оптимальной дозе – Нэфесс. Отсюда при средних индивидуальных эквивалентных дозах облучения выше Нэф целесообразно использовать средства защиты и контрмеры, а при дозах меньших, чем Нэф, анализ соотношения польза-вред свидетельствует о нецелесообразности применения рассматриваемых способов защиты и контрмер.

1.7. Проблемы дозиметрии на загрязненных радионуклидами территориях

Приборную дозиметрию и модели расчета доз для человека разработаны достаточно полно. Методы оценки доз для биоты в зоне радионуклидных загрязнений еще должны быть разработаны. Поглощенную дозу от внешних источников гамма-облучения можно оценивать с помощью дозиметров, размещенных на полигонах, где проводятся исследования. Особенно удобно для этого использовать таблетки ТЛД (термолюминесцентные дозиметры) – детекторы, их легко разместить в лесу, непосредственно на почве, поместить в нору животного и оценивать с помощью дозиметров, размещенных на полигонах, где проводятся исследования. Особенно удобно для этого использовать таблетки ТЛД (термолюминесцентные дозиметры) – детекторы, их легко разместить в лесу, непосредственно на почве, поместить в нору животного и т.д. Выдержав дозиметры определенное время на полигоне, можно провести анализ на специальном пульте (пульт Харшоу) и по соответствующей номограмме, рассчитать поглощенную дозу.

Поглощенную дозу облучения можно также рассчитать по специальным формулам для источников разной формы, которые содержат разные радионуклиды. При таких расчетах учитывают массу, размер и форму растений и тела животных, а также время пребывания на почве, на дереве и другие ситуации. Дозиметрические формулы дают возможность получить приближенные к реальным оценкам, значения поглощенных доз облучения от точечных, плоских и объемных источников. Следует учесть, что простой и одновременно универсальной формы для расчетов быть не может. Понятно, что особенно сложной является проблема оценки поглощенных доз облучения для растений и животных, которые живут в зонах радионуклидных аномалий. Для расчета и оценки поглощенных доз облучения вследствие попадания радионуклидов на поверхность растений и тела животных, а также накопления их в организмах необходимо учитывать такие параметры:
1. Спектр и активность разных радионуклидов в компонентах экосистем в зоне проживания растений и животных. На одной и той же самой территории даже с однородным уровнем загрязнения радионуклидами они будут разными для растений, мlekопитающих, птиц, рыб.

2. Среднее расписание времени пребывания, передвижения и место проживания разных представителей биоты экосистемы в разных компонентах и участках экосистемы, на разных стадиях жизни отдельных видов живых организмов и популяций. Даже для растений на стадии семян, проростков, молодого и зрелого растения, дозы могут резко различаться.

3. Коэффициенты накопления (K_n) и средние концентрации в организмах, радионуклидов для разных представителей биоты, распределение радионуклидов в тканях и органах (особенно критических) растений и животных в онтогенезе могут также резко отличаться. Если коэффициенты накопления намного превышают единицу (для водной биоты K_n может достигать 1-3×10³ и больше), следует учитывать взаимное влияние гамма-облучения особей в случае высокой плотности проживания, а не только поглощенные дозы, вследствие внутреннего облучения. Это касается, прежде всего, фито- и зоопланктона в водных экосистемах.

4. Размер (объем) критических органов и тела растений и животных. Если размер особи, ее критических органов очень мал (микроорганизмы, меристемы растений и др.), то формула расчета поглощенной дозы должна учитывать пробег гамма-, бета- и альфа-излучателей. Возможно, для малых объемов только часть дозы облучения от инкорпорированных радионуклидов поглощается непосредственно в пределах критического органа или всего тела организма, другая часть дозы может поглощаться абиотическими компонентами среды (воздух, вода, почва etc) или в организмах других представителей биоты при высокой плотности и численности разных видов в определенном объеме почвы, воды, донных отложений.

5. Для того чтобы учесть пространственное распределение и перераспределение радионуклидов в реальных экосистемах и ландшафтах, крайне необходимо учитывать динамику концентрирования радионуклидов в критических составляющих экосистемы. Это может со временем привести к формированию значительных дозовых нагрузок на критическую биоту экосистем. В первую очередь это касается биоты водных экосистем. То есть, выделено пять групп параметров, которые могут значительно повлиять на оценку доз, поглощенных представителями биоты в экосистеме, вследствие внутреннего и внешнего облучения. При этом каждая конкретная ситуация требует специального рассмотрения, выбора и разработки модели и формулы для расчета поглощенной дозы облучения на каждой стадии жизни организмов и популяций. Дозу облучения, поглощенную биотой экосистемы, измеряют в Греях. Поскольку существующие оценки ОБЭ (относительной биологической эффективности) разных видов излучений ориентированы на организм человека, они не могут быть автоматически перенесены на других представителей биоты экосистем. Понятно, что биологический эффект альфа-излучателей, которые попали в тело дождевого червя, может отличаться от оценок ОБЭ, принятых для легких человека (20 единиц). Поэтому универсальные формулы расчета эквивалентных доз облучения для разных видов биоты пока нет, а оценки их в зверях (бэрах) могут иметь только ориентировочное значение. Модели для расчета доз на биоту экосистем будут рассмотрены нами в другой части книги.

Таким образом, в этом разделе были рассмотрены основные модели, методы и приемы для расчета поглощенных и эквивалентных доз от разных типов и видов источников облучения, которые попадают в экосистемы. Приведены основные ориентировочные и точные методы оценки доз, сформированные вследствие внешнего влияния радионуклидов, а также попадания в организм с воздухом во время дыхания и употребления пищи и воды. Все эти приемы и методы достаточны просты и доступны, они дают возможность конкретно оценивать и прогнозировать средние значения индивидуальных эквивалентных эффективных доз облучения, а также рассчитывать коллективные эквивалентные дозы. Специально рассмотрена проблема расчета и анализа коллективных эквивалентных доз облучения для больших популяций населения. Показаны особенности и области применения оценок индивидуальных и коллективных эквивалентных доз облучения. Показана необходимость оценок коллективной эквивалентной дозы при расчетах соотношения вред-польза для разных радиозоэкологических ситуаций и при оценке эффективности контрмер.
Основным критерием оценки последствий облучения для людей является уровень индивидуальной эквивалентной дозы, особенно для критических групп населения. Если этот показатель превышает 0,05-0,1 Зв (5-10 бэр) в год, то ситуация потребует вмешательства и использования оптимальных контрмер. Критерий оценки коллективных эквивалентных доз облучения пригоден для общей характеристики ситуации и сравнения эффективности, запланированных и/или реализованных контрмер и практически не пригоден для оценки и прогноза заболеваний у конкретных лиц из населения, если индивидуальные дозы не превышают 0,05 Зв (5 бэр) в год. Очевидно, что контрмеры медицинского характера должны базироваться на оценках индивидуальных эквивалентных доз облучения для критических групп населения, а оценки коллективных доз могут быть полезными для принятия решений по выбору обще-рégиональных контрмер, где это целесообразно, и для оценки соотношения вред-польза.

1.8. Теоретический анализ основных понятий и параметров современной радиоэкологии

Возьмем за основу для анализа 2-х камерную модель: ОС – камера - окружающая среда (вода, почва и т.д.) и камера - БИОТА (наземные и водные растения, лес и т.д.). Пусть мы имеем 2 камеры и скорости перехода между ними: a_{12} – скорость перехода из камеры ОС в камеру –биота. a_{21} – скорость обратного перехода (оттока) из камеры биота в окружающую среду (ОС). Размерность таких скоростей – это доля радионуклидов ΔA, от величины запаса радионуклидов в конкретной камере – A, которая переходит из одной камеры в другую, за единицу времени – Δt. Таким образом, размерность $[a] = \Delta A / A \Delta t$. t – может измерятьться часами, днями, месяцами, годами и т.п.

Предположим, что исходный запас радионуклидов в камере 1 – составляет Y_0 Бк (Cs^{137}). Расчет камерной модели с использованием математического продукта MAPLE 6, представлен в виде системы из двух обыкновенных дифференциальных уравнений:

$$
\text{dif1} := \text{diff}(y(x), x) = a_{21} \cdot z(x) - a_{12} \cdot y(x);
\text{dif2} := \text{diff}(z(x), x) = a_{12} \cdot y(x) - a_{21} \cdot z(x);
$$

Решение такой системы может быть представлено следующим образом:

$$
inicond := y(0) = Y_0, z(0) = 0
$$

$$
sol := \left\{ y(x) = \frac{a_{21} \cdot Y_0}{a_{12} + a_{21}} + \frac{Yo \cdot a_{12} \cdot e^{-(a_{12} + a_{21}) \cdot x}}{a_{12} + a_{21}}, - \frac{Yo \cdot a_{12} \cdot e^{-(a_{12} + a_{21}) \cdot x}}{a_{12} + a_{21}} + \frac{Yo \cdot a_{21}}{a_{12} + a_{21}} \cdot a_{21} \right. \\
\left. - \frac{a_{12} \cdot a_{21}}{a_{12} + a_{21}} \right\}
$$

Рис. 1.3. Схематическое изображение двух камерной модели (модельной экосистемы).

Рассмотрим параметры радиоэкологических процессов через данную систему уравнений. Проведем расчет для z и y при следующих значениях $a_{12} = 0.4$ и $a_{21} = 0.05$. Для этих значений построим графики зависимости содержания радионуклидов в камерах окружающая среда – $Z(t)$ и биота - $Y(t)$.

<table>
<thead>
<tr>
<th>Окружающая среда (1)</th>
<th>Биота (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y(x)$</td>
<td>$Z(x)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Окружающая среда (1)</th>
<th>Биота (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y(x)$</td>
<td>$Z(x)$</td>
</tr>
</tbody>
</table>

(1.11)
3. Рассмотрим ситуацию с почвенной агроэкосистемой. Площадь 1 м² глубиной 20 см – общий вес примерно 200 кг. Пусть здесь выращивается -5 кг биомассы (урожай кормовой травы – 500 У/gа).

Формула для веса почвы W = V · ρ (где ρ - плотность почвы кг/м³) При ρ = 1 000 кг/м³ W = 200 кг.

Тогда, исходя из базовой формулы (1.8) следует, что

\[K_n \approx (\frac{V \cdot ρ}{P} \cdot \frac{a_{12}}{(a_{21} + a_{12})}) \leq \frac{V \cdot ρ}{P} (1.14) \]

В данном конкретном случае предел для \(K_n = 200/5 = 40 \) единиц.

Таким образом, существует предел для значений \(K_n \), не связанный с природой радиоэкологических явлений, а зависящий только от размеров камеры – окружающая среда и от урожая биомассы, снимаемого на этом объеме среды обитания.

Таблица 1.9. Базовые формулы для разных радиоэкологических параметров.

<table>
<thead>
<tr>
<th>Базовые формулы для разных радиоэкологических параметров</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_n = \frac{Z}{P} \cdot Yo/V = \frac{(V/P) \cdot a_{12}}{(a_{12} + a_{21})} \cdot [1 - \exp{-(a_{12} + a_{21}) \cdot x]}] \quad (1.12))</td>
</tr>
<tr>
<td>Если (X \to \infty) то (K_n \to (V/P) \cdot a_{12}/(a_{21} + a_{12}) \approx V/P) (максимум)</td>
</tr>
<tr>
<td>(K_n = \frac{(1000/P) \cdot (a_{12}/(a_{12} + a_{21}) \cdot [1 - \exp{-(a_{21}) \cdot x]}, \text{ при } x \to \infty)</td>
</tr>
<tr>
<td>(K_n \to (1000/P) \cdot (a_{12}/(a_{12} + a_{21}) \text{ (максимум } K_n = 1000/P))</td>
</tr>
<tr>
<td>(A = \frac{(Z/P) \cdot Yo \cdot P}{Z/ Yo} = \frac{(a_{12}/(a_{21} + a_{21}) \cdot [1 - \exp{-(a_{21}) \cdot x]})}{\text{ при } x \to \infty A \approx a_{12}/(a_{12} + a_{21})})</td>
</tr>
<tr>
<td>(K_n / A = V/P)</td>
</tr>
<tr>
<td>(K_n / A = V \cdot ρ / P)</td>
</tr>
<tr>
<td>(K_n / A = 5 / ρ)</td>
</tr>
<tr>
<td>(A = K_n \cdot P / V)</td>
</tr>
<tr>
<td>(K_n = A \cdot V/P)</td>
</tr>
</tbody>
</table>

Используя данные формулы, проведем оценку выноса радионуклидов из почвы при разном урожае биомассы (таблица 1.10).

Таким образом, установлены пределы выноса – 100 %, и предельные значения \(K_n \), достижимые в реальных средах. Чем меньше урожай биомассы, тем большие значения - \(K_n \) будут достижимы.

Можно сделать вывод, что используемые в радиоэкологии параметры не являются инвариантами, и тем самым, не могут лечь в основу теоретической радиоэкологии.
Таблица 1.10. Оценки выноса радионуклидов для почвенной экосистемы (при плотности почвы 1 г/см³).

<table>
<thead>
<tr>
<th>Р<count> (кг/м²)</th>
<th>Кн</th>
<th>Предел Кн</th>
<th>Кн=V/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>5E-7</td>
<td>5E-6</td>
<td>5E-5</td>
</tr>
<tr>
<td>0,1</td>
<td>5E-6</td>
<td>5E-5</td>
<td>5E-3</td>
</tr>
<tr>
<td>1</td>
<td>5E-5</td>
<td>5E-4</td>
<td>5E-3</td>
</tr>
<tr>
<td>5</td>
<td>2E-4</td>
<td>2E-3</td>
<td>2,5 %</td>
</tr>
<tr>
<td>10</td>
<td>5E-4</td>
<td>5E-3</td>
<td>5 %</td>
</tr>
</tbody>
</table>

1.9. Проблемы синергизма и антагонизма радиационного и химического фактора в исследованиях на модельной двухкамерной экосистеме

Важной задачей современной радиобиологии, радиоэкологии и общей экологии является изучение эффектов, вызванных сочетанием влияния различных стрессовых факторов на живые организмы, а также процессов восстановления и адаптации к стрессовым влияниям. В условиях загрязненной среды, важно знать особенности совместного влияния разных вредных факторов на организмы, их взаимодействия между собой. Явление синергизма во взаимодействии разных по своей природе стрессоров - это актуальный вопрос, привлекающий внимание многих биологов, радиобиологов, экологов.

Для оценки влияния радиационного облучения в отдельности, а также в комбинации с внесением в питательную среду соединений токсических металлов, на состояние модели растительной экосистемы (водной культуры растений) нами предложено использовать чувствительный показатель - фактор радиоемкости. Представление о факторе радиоемкости, предложенному Агре и Корогодиной в 1960 г., положено нами в основу новой радиоэкологической концепции - концепции экологической емкости и радиоемкости. Радиоемкость экосистем, как уже указывалось выше, определяется как предел депонирования радионуклидов в экосистеме и ее элементах, выше которого может произойти утечение, подавление и гибель биоты экосистемы. Фактор радиоемкости рассчитывается, как доля радионуклида трассера (например - 137Cs) в компонентах экосистемы. Для оценки состояния и благополучия экосистем используют до 30 различных показателей и параметров – от разнообразия видов до биомассы и т.д. Важной особенностью этих показателей, что практически все они начинают существенно изменяться, только когда биота претерпевает значительные изменения. Практически очень важно иметь показатели и параметры, которые позволяют либо опережающим образом, оценивать состояние биоты экосистем и особенностии распределения и перераспределения поллютантов в реальных экосистемах и целых ландшафтах. На основе теоретического анализа и экспериментальных исследований нами предложено использовать такую меру – как радиоемкость и/или фактор радиоемкости экосистемы и ее составляющих. Радиоемкость определяется как предельное количество радионуклидов, которое может накапливаться в биотических компонентах экосистемы, без нарушения их основных функций (воспроизводство биомассы и концентрация в среде обитания). Фактор радиоемкости определяется, как доля поллютантов, что накапливается в том или ином компоненте экосистемы (ландшафта). Нами было предложено для оценки благополучия биоты в экосистеме использовать в качестве определяющих – два параметра – биомасса видов в экосистеме и их способность очищать концентратов среду от отходов жизнедеятельности и поллютантов, попадающих в экосистему.

Исследуемая в наших экспериментах, модельная экосистема (водная культура растений в камере), может быть представлена в виде двух камерной модели: вода – биота. Допустим, что в данную экосистему в ее устойчивом состоянии, попадает некоторое количество радионуклидов. Радионуклиды распределяются между компонентами экосистемы и описываются соответствующими значениями факторов радиоемкости. Рассмотрим проблему радиоемкости на примере двухкамерной модели экосистемы (водная культура растений), которая состоит из воды (количество радионуклида - трассера в воде - Y(x) и в биоте - Z(x)). Пускай мы имеем, две камеры, которые содержат Y(x) и Z(x) количества радионуклидов, во времени- х; пусть: а12 – скорость поглощения радионуклидов трассера (пропорционально скорости поглощения питательных веществ, например аналога цезия, калия); а21 – скорость оттока радионуклидов в воду.
Рассмотрим, выше указанную, двух камерную модель экосистемы. Допустим, что исходный запас радионуклидов в камере \(Y(x) \) составлял \(Y_0 \{ 18 \} \). Решением камерной модели из двух дифференциальных уравнений для данной модели, как уже было указано выше, есть:

\[
Y(x) = \frac{Y_0}{a_{12} + a_{21}(a_{21} + a_{12}\exp[-(a_{12} + a_{21})x])}
\]

(1.15)

\[
Z(x) = \frac{Y_0 a_{21}}{a_{12} + a_{21}(\exp[-(a_{12} + a_{21})x])}
\]

Когда время наблюдения велико, то можно рассчитать и оценить фактор радиоемкости для биоты и для воды следующим образом:

\[
F_b \approx \frac{a_{12}}{a_{21} + a_{12}}; \quad F_w \approx \frac{a_{21}}{a_{12} + a_{21}}
\]

(1.16)

Сравняя эти уравнения можно получить, используя формулу для факторов радиоемкости:

\[
\frac{a_{12}}{a_{21}} = \frac{F_b}{F_w} = 1 - \frac{F_w}{F_b} = K\cdot P = Z \quad (\text{обозначим этот параметр как } Z) \quad (1.17).
\]

Тут \(K \) – коэффициент накопления биоты в данной двукамерной модели (водной культуре растений кукурузы), а \(P \) – плотность биомассы в данной модели (Вывод соотношения \(Z = K \cdot P \), буде нами сделан, далее в книге).

Таким образом, отношение скоростей поглощения и оттока трассера\(^{\text{137}}\text{Cs} \) и его аналого - элемента минерального питания калия пропорционально биомассе биоты и коэффициенту накопления в системе „вода-биота”. Это означает, что чем выше биомасса биоты и коэффициент накопления трассера биотой, и тем выше соотношение скоростей поглощения и оттока трассера, а значит и питательных веществ из воды в биомассу биоты. Тут хорошо видно связь параметра радиоемкости со скоростями поглощения и оттока.

Используя данную модель, нами проведен цикл исследований на модельной экосистеме – водной культуре растений кукурузы, который показал, что фактор радиоемкости биоты, по отношению к искусственному трассеру - \(^{\text{137}}\text{Cs} \), является весьма чувствительным показателем состояния биоты, и коррелирует с изменениями ростовых показателей (рис 1.6). Показано, что чем лучше проходит ростовой процесс, тем выше фактор радиоемкости биоты модельной экосистемы. Показано, что изменения параметров радиоемкости могут служить адекватным показателем распределения и перераспределения радионуклидов в экосистеме, и мерой благополучия биоты в ней. Таким образом, показана применимость подхода с позиций моделей радиоемкости для анализа различных экосистем. Результаты исследований представлены на рис 1.6. Здесь представлена динамика изменения ОСР (относительной скорости роста корней) и поведения фактора радиоемкости биоты в данной модельной экосистеме.

Из рис. 1.6. следует важный вывод о синбиотности поведения биологического ростового показателя и динамики фактора радиоемкости. По этим данным мы можем оценить параметр взаимодействия между химическим фактором (соль кадмия) и радиационным фактором - показатель синергизма.

![Рис. 1.6. Динамика скорости роста (A) и фактора радиоемкости (B) растений, относительно контроля. 1 – фракционированное облучение (10 Гр+10 Гр) вместе с фракционированным внесением хлорида кадмия (25 мкМ+25 мкМ), время между фракциями – 24 часа (для обеих); 2 - фракционированное внесение хлорида кадмия (25 мкМ+25 мкМ); 3 - фракционированное облучение (10 Гр+10 Гр); 4 –остро \(\gamma \)-облучение (20 Гр) в комбинации с острым внесением 50 мкМ соли CdCl2.](image)

Показано, что данная модельная экосистема может быть использована для эквидозиметрических оценок комбинированного влияния химических и физических факторов. В частности,
воздействие тяжелого металла кадмия в концентрации около 3-4 мкмоль/л соответствует, по биологическому эффекту и по влиянию на параметры радиоемкости, дозе острого гамма-облучения в 1 Гр. На основе моделей нами разработан параметр, который позволяет оценивать характер взаимодействия разных факторов - синергизм, аддитивность и антагонизм и определяется для двух факторов, следующей формулой (1.18)[4]:

\[S = \frac{[Z (Cd+Обл) \cdot Z_0]}{[Z (Cd) \cdot Z(Обл)]} \] (1.18)

где Z₀ - отношение \(F_b/F_w \) контрольного варианта; \(Z(Cd+obл) \) – отношение для комбинированного воздействия γ-облучения и хлорида кадмия; \(Z(Cd) \) и \(Z(обл) \) – отношение для независимых воздействий каждого из факторов.

При \(S < 1 \) – наблюдается синергизм в взаимодействии факторов, то есть факторы усиливают негативное действие друг друга (независимое действие каждого из факторов); при \(S > 1 \) - антагонизм, то есть негативное воздействие одного фактора, уменьшается под действием другого.

Оценка поведения параметра – S, в реальных экспериментах показала, что остром воздействии факторов облучения и внесения соли кадмия наблюдается отчетливый эффект синергизма (\(S < 1 \)), а при включении эффекта восстановления за счет фракционирования внесения соли кадмия и гамма-облучения проявляются уже эффекты антагонизма (\(S > 1 \)).

Наиболее четкий эффект синергизма на протяжении всего времени исследований отмечался для комбинированного действия фракционированной радиации и химического фактора с временным интервалом между фракциями 6 часов. При временах фракционирования в 10 и 24 часа, наблюдался антагонизм в действии радиации и внесения тяжелого металла. В эксперименте было показано, что процессы восстановления могут уменьшать эффект синергизма при комбинированном воздействии облучения и тяжелого металла. Показано существование эффекта адаптации растений к острым, тестирующим дозам излучения (11 Гр) при предварительном облучении дозой 1 Гр и разных значениях времени между адаптирующей и тестирующей дозой гамма-облучения.

Таким образом, нами проведен количественный анализ роли систем восстановления и адаптации в эффектах взаимодействия разных факторов через их влияние на параметры радиоемкости. Обнаружены эффекты не аддитивности (синергизма) при разных режимах комбинированного действия стрессоров.

В общем случае -n поллютантов, которые действуют на экосистему, формула для оценки синергизма через параметры радиоемкости будет следующей:

\[S_n = \left(\frac{Z \cdot Z^{n-1}}{\Pi Z_i} \right), \] (1.19)

где Z - Параметр отношения \(F_b/F_w \) при одновременном действии на биоту экосистемы - n факторов, \(Z^{n-1} \) - параметр \(F_b/F_w \) для контроля в (n -1) - степени, \(\Pi Z_i \) – произведение параметров \(F_b/F_w \) при условии действия отдельных факторов из –n.

Таким образом, нами построена модель оценки комбинированного влияния нескольких поллютантов на экосистему, введены необходимые параметры для оценки синергизма и формулы для их расчета по экспериментальным данным.

Основные выводы из данной части книги следующие:
1. Установлено, что фактор радиоемкости отображает изменение состояния экосистемы, как после действия гамма-облучения так и после внесения соли токсического металла- кадмия.
2. Установлена возможность опережающей оценки состояния модельной экосистемы с помощью фактора радиоемкости по специально введенному в среду – трассеру \(^{137}\text{Cs} \).
3. Обнаружено позитивное влияние на показатели радиоемкости модельной экосистемы фракционирования токсического фактора, что может свидетельствовать о роли процессов восстановления растительной компоненты экосистемы в защите от токсического влияния.
4. Показано, что показатели радиоемкости по трассеру \(^{137}\text{Cs} \) адекватно отображают изменение состояния модельной экосистемы, позволяют выявить восстановительные процессы при фракционировании факторов воздействия.
5. Разработанные и реализованные в работе теория и модели радиоемкости, образуют важное и перспективное новое направление в современной радиоэкологии и общей экологии, развитие которого будет нами представлено ниже.
Литература

ЧАСТЬ 2.
РАДИОЕМКОСТЬ И НАДЕЖНОСТЬ ЭКОСИСТЕМ

2.1. Исследование надежности растительных объектов радиобиологическими методами
2.1.1. Основы теории надежности биосистем и ее применение в радиобиологии и экологии
2.1.1.1. Принципы анализа и основные понятия надежности биологических систем

Биологические объекты обладают очень высокой степенью надежности, которая значительно превышает надежность любых технических систем. Это можно отразить, прежде всего, в сроке существования биологических систем, который значительно превышает срок безотказного существования технических систем. В качестве определения понятия «надежность» биосистем можно предложить следующее: надежность – фундаментальное свойство биологических объектов, определяющее их эффективное существование и функционирование в случайно варьирующих условиях среды и во времени. Мерой надежности есть вероятность безотказного существования системы, которая может изменяться от 0 до 1. [1; 2]

Биологические системы имеют множество функций, среди которых выделяется главная функция биологического объекта, определяющая его жизнеспособность. Под влиянием различных условий в биологической системе могут происходить отказы по любой из основных функций.

В математической теории надежности систем выделяют два основных типа систем [3]. Пусть надежность отдельного элемента системы определяется через P_i – вероятность безотказного существования элемента. Первый, простой тип системы, сложенной из многих элементов, – это система последовательного типа. Простейший пример такой системы – однонитевая елочная гирлянда. Она не работает, когда отказывает хотя бы одна лампочка. Математически надежность такой последовательной системы, состоящей из n элементов, определяется по формуле умножения вероятностей следующим образом:
\begin{equation}
P_{\text{пос.}} = \prod_{i=0}^{n} P_i \tag{2.1}
\end{equation}

Понятно, что такая последовательная система обладает очень низкой надежностью, поскольку отказ хотя бы одного элемента приводит к отказу (сбою работы) всей системы. Даже высокая надежность элементов в системе не способна обеспечить высокой надежностью такой последовательной системы, состоящей из многих элементов.

Еще один тип систем – системы параллельного типа. Системы этого типа могут отказывать только тогда, когда все рабочие элементы системы будут в состоянии отказа. По данной схеме работают практически все электрические сети в домах и в промышленности. Если вероятность отказа одного из элементов составляет \(P_i \), то вероятность безотказного существования системы составляет \(1 - P_i \). В параллельной схеме все элементы работают независимо. Поэтому по формуле умножения вероятностей возможность отказа всех \(n \) элементов составляет:

\begin{equation}
P_{\text{отклмн}} = \prod_{i=0}^{n} (1 - P_i) \tag{2.2}
\end{equation}

Тогда вероятность безотказного существования такой параллельной системы определяется по формуле:

\begin{equation}
P_{\text{пар}} = 1 - \prod_{i=0}^{n} (1 - P_i) \tag{2.3}
\end{equation}

Очевидно, система, построенная по параллельной схеме, будет высоко надежной, даже если надежность ее отдельных элементов незначительная. Свойство параллельной системы лежит в основе метода резервирования и часто используется при создании высокоопрочных технических систем и конечно в структуре существующих биологических систем.

Надежность сложной высокоопрочной системы может обеспечиваться или использованием очень высокоопрочных, и/или специальными системами обеспечения надежности, а именно: эффективными системами восстановления и/или системами резервирования. В целом, биологические системы, которые прошли многовековой отбор и влияние постоянно изменяющихся условий существования, можно (по определению Дж. Фон Неймана) [1] считать как высокоопрочные системы, построенную из малоопрочных элементов. Невысокая надежность биологических элементов – молекул, клеток – определяется непродолжительным сроком их существования (молекулы, как правило, существуют минуты, часы или годы, а клетки – «часы, сутки или годы»). Поэтому, принимая мерой надежности, среднее время безотказного существования, можно сказать, что надежность биологических элементов (клеток, молекул), как правило, значительно ниже надежности самой биологической системы, которая из них построена. Из этого следует, что высокая надежность биологических объектов не может полностью определяться надежностью составляющих элементов, а полностью зависит от эффективности работы систем восстановления и резервирования.

В теории надежности восстановление определяется как «ремонт» или «замена» отказавшего элемента на рабочий. Еще одним методом обеспечения надежности системы есть введение в неё избыточных или резервных элементов.

Структурное резервирование – введение в систему резервных элементов или подсистем, находящихся в разных режимах функционирования (рис. 2.1.): в нерабочем (холодном), минимально рабочем (теплом) и рабочем (горячем) состояниях.

![Рис. 2.1. График структуры высокоопрочной системы.](image)

В зависимости от режима работы с той или иной скоростью резервные элементы начинают функционировать в замен отказавших
элементов. Отказавшие элементы поступают в систему восстановления [4].

Кроме структурного резервирования существуют и другие типы резервирования, представленные в биологических системах.

Временное резервирование – метод повышения надежности систем с использованием избытка времени, когда элементы, в частности, способны надежно функционировать больше времени, чем это необходимо для системы.

Информационное резервирование – использование избыточной информации.

Функциональное резервирование – использование способности элементов выполнять дополнительные функции.

В целом следует сказать, что надежность технической системы можно определить на уровне проектирования путем создания удачной системы, оптимально использующей различные типы восстановления и резервирования. В этом случае схемы выбирают таким образом, чтобы элементы длительного использования восстанавливались, а короткого – были зарезервированы. Что же касается биологических систем, главной проблемой при анализе их надежности есть то, что структура и способы обеспечения их надежности изучены мало. Применение и развитие теории надежности биологических систем создают возможность с достаточной эвристичностью изучать структуру биосистемы и способы обеспечения высокой надежности, заложенные в данной структуре.

Важное отличие биологических систем от технических состоит в том, что в технике можно спрогнозировать все внешние факторы и систему можно испытать на надежность по отношению к любому из факторов. В случае биологических систем множество действия внешних факторов, которые вызывают отказы, не могут быть строго спрогнозированными.

2.1.1.2. Иерархические системы в биологии

По своей структуре биологическая система есть четко иерархическая, что отображается в ее надежности. Рассматривая простейшую иерархическую систему, состоящую из n уровней (рис. 2.2), видно, что система с таким типом организации структуры заметно надежнее, чем другие типы структур (например, автономный). Рассматривая граф иерархической системы можно проследить за судьбой отказа, который возник на нижнем уровне иерархии данной системы.

Допустим, что вероятность отказа элементов нижнего уровня P_1. Тогда вероятность формирования отказа на втором уровне иерархии P_2 – будет состоять величину $P_1 \leq P_2$, что зависит от способа, по которому элементы a_1, a_2, a_3, \ldots формируют элемент B_3, то есть в зависимости от надежности элементов- B_3, построенных из элементов- B_1. Практически это обозначает, что с ростом уровня иерархии может возрастать надежность элементов на высших уровнях. Иначе говоря, чем больше уровней иерархии и элементов на этих уровнях, образующих биосистему, тем выше ее надежность. И при заданном уровне надежности биосистемы, тем ниже требования к надежности элементов, находящихся на нижних уровнях иерархии. Эта особенность позволяет строить высоконадежные системы из малонадежных элементов. Исходя из иерархического принципа, можно сделать вывод о том, что чем ниже уровень иерархии, на котором происходит отказ, тем выше надежность биосистемы. При возникновении повреждений элементов высоких уровней иерархии, надежность биосистемы

Рис 2.2. Граф простейшей иерархической системы на n – уровнях.

1. a1, a2, a3

2. a1, a2, a3

3. a1, a2, a3

C1

B1

n-2

n-1

n1
заметно снижается вследствие потери преимуществ иерархической системы [2].

Принцип иерархичности в реализации, например, репродуктивной функции детально проанализирован как «принцип эстафеты», по которому создание сложных элементов, построенных из большого количества идентичных структур, реализуется путем передачи репродуктивной функции только одной из вновь созданных структур. Каждый биологический объект или система занимает определенное место в иерархии ниже- и вышележащих уровней биологической организации (рис. 2.3.)(5).

Рис 2.3. Иерархическая структура биологических систем от молекул до биосферы.

2.1.1.3. Концепция надежности в радиобиологии многоклеточных систем [2]

Многоклеточные организмы представляют собой многоуровневую иерархическую структуру: клетка – субпопуляция клеток – ткань – организм – популяция организмов – и т. д. Для каждого уровня интеграции характерны свои функции, а в радиобиологии – свои критерии-меры выживаемости. На уровне клеток радиобиологический эффект можно определять по инактивации клеток (формы инактивации) для пролиферирующих клеток, для соматических клеток – потеря функциональной активности и т.п. Эффект на уровне субпопуляции клеток может определяться по-разному. Так, жизнеспособность организованной субпопуляции клеток может быть обеспечена тем, что сохраняется жизнеспособность у нескольких из исходного числа клеток, и эти клетки смогут обеспечить функцию всей субпопуляции. Для других субпопуляции клеток их жизнеспособность может быть обеспечена тем, что из выживших клеток в процессе делений сформируется достаточно большое число жизнеспособных клеток, и это приведет к выживанию субпопуляции.

На этих примерах отчетливо видна самая важная особенность многоклеточных организмов по сравнению с одноклеточными. Для одноклеточного организма все клетки после облучения либо выживают и образуют макроколонии, либо гибнут. В системе многоклеточного организма клетки, погибшие по разным формам инактивации и выжившие в разных «формах выживания» (например, сальтанты дрожжевых клеток) с образованием множества клеток с различными нелетальными эффектами от радиации, так или иначе, участвуют в формировании реакции многоклеточных систем на облучение. Вопрос о радиобиологических особенностях многоклеточных систем сводится к вопросу о том, как это разнообразие индивидуальных клеток проявляет себя в радиобиологической реакции субпопуляции клеток, тканей, органа и организма в целом. Четкого ответа на этот вопрос пока нет. Поэтому для решения этих вопросов можно и нужно использовать идеи и методы теории надежности биологических систем, которые находятся в активном развитии.

Рассмотрим разные уровни интеграции биосистем с позиции теории надежности. Субпопуляции клеток образуют популяцию клеток или ткань. В зависимости от способа организации тканей из субпопуляций может изменяться характер радиобиологических реакций. Для меристемы корня растений характерна «последовательная» структура. Клетки центра покоя формируют и поддерживают инициальные клетки, образующие в процессе делений пул пролиферирующих клеток, которые затем поступают на растяжение и дифференциацию.
Ваше уже отмечалось, что высокая надежность биологических систем не может существовать сама по себе, а должна обеспечиваться эффективными системами восстановления и резервирования. Такие системы широко представлены у биологических объектов, но для них необходимы соответствующие исследования. Для таких исследований необходима специальная система испытаний.

При исследовании надежности сложных технических систем схема испытаний состоит из того, что из \(N \) систем, поставленных на испытание, часть из них – \(N_0 \), отказывает. И для описания системы обычно используют параметр, характеризующий вероятность безотказной работы системы в интервале времени \(0 - t \). Аналогичные показатели можно получить и для биологических систем. Но значительно важнее разработать систему испытаний биологических систем, позволяющую исследовать природу надежности биосистем и ее структуру. Исследования показали, что необходимо создать ускоренную систему испытаний биосистем, которая была бы универсальной – применимой для любых биологических систем, адекватной – не нарушала бы законов существования биосистемы и могла бы помочь анализировать структуру и свойства биосистемы. Основным фактором для такой ускоренной схемы испытаний, как показали наши исследования, может быть ионизирующая радиация. Облучение, как известно, вызывает у биологического объекта поток отказов, который описывается распределением Пуассона. Изменяя интенсивность этого управляемого потока отказов, можно изучать надежностные свойства биологического объекта, его способность к восстановлению и резервные свойства биосистем.

В процессе нормальной жизни биосистемы на нее постоянно оказывает влияние множество случайных факторов низкой интенсивности. Из теории надежности известно, что суммарный поток, состоящий из множества слабых потоков отказов, можно описать в виде простейшего пуассоновского потока отказов [2]. Поэтому мы имеем полное право, при помощи облучения, к естественному пуассоновскому потоку отказов в ускоренную систему испытаний, добавить ионизирующее излучение (также пуассоновский поток отказов), чтобы за короткое время поднять контролируемый уровень отказов, которые по характеру действия радиации на биосистемы возникают на самых нижних уровнях иерархии биосистем, на уровне атомов и молекул.

Можно считать, что в судьбе и устранении таких отказов будут принимать участие все разнообразные системы обеспечения надежности биосистем на разных уровнях интеграции. Поэтому возможность использования радиации при испытании надежности биосистем позволяет говорить о совпадении внутренней сущности понятий радиоустойчивости и надежности [2].

Способность биосистем устранять отказы, восстанавливая повреждения и/или ликвидировать их последствия составляет существо систем надежности и определяет количественное значение меры надежности. У нас есть основания считать, что естественно возникающие потоки отказов в биосистемах и отказы в условиях облучения и в пострадиационный период практически совпадают по месту их появления и по характеру распределения в клетках. Различие состоит лишь в том, что естественные отказы возникают в длительное время функционирования, постепенно, а не быстро как при облучении, и их возникновение сопровождается изменением во времени состояния биосистемы. Из теории испытаний известно, что, например, среднее время безотказной работы в нормальном и в ускоренном режимах прямо пропорциональны друг другу. Соотношение прямой пропорциональности можно установить и для других мер надежности биосистем. Это будет обозначать выполнение принципа адекватности системы в нормальном режиме функционирования и в условиях ускоренного испытания надежности.

При этом параметр выживаемости \(\hat{B} \), как известно из теории надежности и теории ускоренных испытаний, связан с параметром надежности - \(B \), простым соотношением:

\[
\hat{B} = aB^*,
\]

где \(a \) – параметр пропорциональности, зависящий только от дозы и режима облучения.

Важный результат этого простого расчета состоит в появлении возможности расчетным путем оценивать радиоустойчивость биосистемы, в целом исходя из данных по радиоустойчивости отдельных подсистем, что открывает новые перспективы для использования идей, методов и математического аппарата теории надежности в радиобиологии многоклеточных систем.
В упрощенном виде задача определения радиоустойчивости - выживаемости многоклеточного организма - может быть сведена, в принципе, к оценке выживаемости отдельных органов, а затем путем расчета на основании знания надежностной структуры организма из отдельных органов - выживаемости целого организма. Важно и то, что возможно и решение обратной задачи - по параметру выживаемости целого организма при знании структуры обеспечения надежности организма оценивать радиоустойчивость, а значит, и относительную надежность отдельных органов, тканей, субпопуляций клеток и т.д. Это позволяет рассматривать теорию надежности как важный эвристический метод исследования биологических объектов.

2.1.1.4. Модели радиационного поражения многоклеточного организма (на примере растений) [2]

Предварительно, следует достаточно подробно определить все основные особенности радиобиологических эффектов у многоклеточных объектов. Ясно, что ни один из них не соответствует тем упрощенным схемам последовательного и параллельного типов, о которых мы упоминали. Основная определяющая особенность многоклеточных организмов состоит в их иерархичности. Радиобиологический аспект иерархичности заключается в том, что каждому уровню иерархии по структуре и функции элементов соответствует своя мера радиобиологического эффекта – мера выживаемости. Эта особенность должна найти отражение в качественной и количественной моделях радиобиологических реакций многоклеточных систем. Вторая особенность - в сложном динамическом характере формирования радиобиологических реакций. Функции биологических объектов на разных уровнях иерархии требуют разного времени. Радиобиологические реакции клеток завершаются обычно в течение нескольких делений. Для реакций на уровне субпопуляций, популяций клеток и тканей требуется уже значительно большее время (много циклов делений клеток для пролиферирующих тканей, например). Чем выше уровень иерархии, тем больше времени требуется для формирования и проявления радиобиологического эффекта. Естественно, чем больше время реакции, тем больше разнообразие клеточных реакций может проявиться в судьбе соответствующих подсистем. Динамический характер радиобиологических реакций, как и иерархичность, находит отражение в соответствующем постулате модели. Чем больше время реализации радиобиологических реакций у многоклеточных организмов, тем больше значение могут играют процессы старения, естественного старения, а особенно процесса старения, ускоренного действием радиации. Это обстоятельство также необходимо учесть при построении модели, посредством соответствующего постулаты.

В основу качественной и количественной моделей радиобиологических реакций многоклеточных систем нами положены четыре основных постулата.

I. При действии радиации на многоклеточный организм возникает большое разнообразие первичных повреждений, описываемых распределением Пуассона, которое лежит в основе образования разных форм инактивации клеток и форм выживания. Все это разнообразие, малозначимое для судьбы одноклеточных организмов, существенно влияет на характер радиобиологических реакций у многоклеточных систем.

II. Каждому уровню иерархии соответствует своя адекватная мера радиобиологического эффекта. Система мер позволяет полностью описать радиобиологические особенности многоклеточного многоуровневого растительного организма.

III. Формирование радиобиологического эффекта требует значительного времени, и чем выше уровень интеграции, тем больше времени требуется для реализации радиобиологического эффекта. В основе влияния динамического фактора на радиобиологический эффект лежат механизмы модификации, восстановления, адаптации и реализации поражения. Динамический фактор может, как усиливать, так и ослаблять радиационное поражение.

IV. Длительная динамика формирования радиационного поражения многоклеточных систем приводит к усилению радиобиологического эффекта за счет процессов нормального старения и старения клеток, ускоренного радиацией. Основой усиления эффекта является совпадение сущности элементарных событий процессов старения и радиационного поражения.

Остановиться на этом постулате подробнее. Существует множество гипотез и теорий о старении на разных уровнях
Исследования проводили на высшем растении из семейства рясковых Спироделе многокоренной. Особи спироделы представляют собой зеленые щитки. В щитке находится генеративный орган вегетативного размножения – меристематическая ткань. С правой и левой сторон щитка имеются карманы, в которых в соответствии с недихотомической родословной появляются дочерние щитки. Генерация дочерних щитков происходит последовательно от 1 до 14. При этом если зачатки первых дочерних щитков представлены в родительской меристеме тысячами клеток, то зачатки поздних 7–8-ых дочерних щитков представлены несколькими клетками (рис. 2.5.) [2].

В связи с этим клетки зачатков первых дочерних щитков способны до их появления осуществить 1-2 деления в составе меристемы (то есть получают возможность реализации только первые самые тяжелые формы инактивации), а зачатки поздних – до 6-8 делений. Это означает, что поздние зачатки, выходя из меристемы, реализуют все основные формы инактивации, и поэтому появляются в заметно меньшем количестве, чем зачатки первых генераций. Схематически данный многоклеточный организм можно представить в виде четырехуровневой системы (рис. 2.6).

Эта своеобразная «матрешка» начинается от уровня клеток. Клетки входят в состав зачатков разного размера. Зачатки образуют популяцию клеток меристемы (ткань) – генеративный орган, который входит в систему целого растения.

Популяция растений образует простую модельную экосистему. Важно, что для каждого уровня иерархии в данной системе можно выделить четко обособленные элементы и функции – гибель клеток, субпопуляций, меристемы и всего растения в целом.
Основная схема наших опытов следующая. Колонии щитков Спироделы многокоренной культивировали в жидкой среде Хатнера [4]. Из клона отбирали зрелые пары щитков в качестве родительских и перекладывали на агаризованную среду. По мере культивирования и вегетативного размножения производили откладку и учет особей в соответствии с недихотомической родословной [4] от 1 до 14 особей. О степени поражения судили по нарушениям появления в родословной дочерних щитков соответствующих номеров.

У ряски меристема образована в виде субпопуляций клеток зачатков дочерних щитков – вегетативных потомков (рис 2.6.), которые пролиферируют относительно независимо друг от друга по «параллельной» схеме, что естественно должно отображаться в разнице радиобиологических реакций этих двух систем. То есть, зная надежность-выживание отдельных субпопуляций и зная надежностную структуру, можно определить (рассчитать) и прогнозировать надежность-выживание всей меристемы по параметрам надежности отдельных субпопуляций клеток.

Для «последовательной» системы меристемы копия ее параметр надежности (выживания) можно получить простым умножением параметров надежности отдельных субпопуляций. Для «параллельной» структуры меристемы щитка ряски, параметр ее надежности можно получить в виде суммы параметров надежности отдельных субпопуляций зачатков. Сложность состоит в четкости определения параметров надежности отдельных подсистем. Аналогично выглядят ситуация и на других уровнях интеграции биосистем. Понятно, что нет принципиальных возражений относительно использования идей, представлений и методов теории надежности для изучения биологических систем.

2.1.1.5. Результаты экспериментальных исследований и теоретического анализа

Клеточный уровень иерархии. Мерой радиобиологического эффекта клеток меристемы есть их способность к делению и образованию микро- и макроколоний разных размеров. Практически все клетки меристемы в зависимости от степени поражения принимают участие в формировании радиобиологических эффектов на более высоких уровнях иерархии.
На графике (рис. 2.7) представлены результаты по оценке сравнительной радиочувствительности зачатков разного размера (значения ЛД₅₀). Видно, что радиочувствительность практически линейно возрастает с ростом номера дочернего щитка. Причина, на наш взгляд, состоит в том, что клетки первых крупных зачатков осуществляют в меристеме 1-2 деления и поэтому после облучения в них успевают проявить себя только самые тяжелые формы инактивации клеток.

На судьбу более поздних щитков оказывают влияние не только тяжелые, но и более легкие формы инактивации. Это приводит к тому, что тяжесть реализованного поражения возрастает с номером щитка, проявляясь в снижении радиочувствительности. Если мы продолжим анализ полученных дочерних щитков в их собственной родословной, то получим обратную картину. Относительная радиоустойчивость потомков, полученных от облученных родительских щитков, увеличивается с номером щитка. Дело в том, что первые дочерние щитки выходят в большом количестве, но они уносят с собой в меристеме много пораженных клеток с недореализованными формами инактивации, которые затем проявляют себя в потомстве дочерних щитков. В то же время щитки поздних дочерних генераций, хотя их и мало, выходят практически очищенными от клеток, несущих нереализованные повреждения, и потому формируют более благополучное потомство. На их судьбе остаточное поражение почти не сказывается. Эти данные позволяют считать, что в популяции клеток меристемы реализуется модель многих форм инактивации, и поскольку остаточные повреждения заметны в потомстве даже 10-го дочернего щитка, можно полагать, что число форм инактивации не меньше 10.

Для математического описания радиационного поражения отдельных клеток меристемы ясна пригодна вероятностная модель Ю.Г. Капульцыевича [6]. Аналитически модель поражения клеток можно описать следующим выражением:

\[P = \sum_{i=0}^{m-1} (1 - a)^i e^{-vD} (vD), \]

где \(P \) — вероятность выживания отдельных клеток при облучении дозой \(D \); \(a \) — вероятность потери способности к делению у клетки от одного попадания в чувствительную мишень клетки объемом \(v \); \(v \) — эффективный объем чувствительной мишени в клетке; \(m \) — ударность этой мишени (количество попаданий, способное полностью инактивировать клетку); \((1 - a)^i \) — вероятность клеток сохранить способность к делению и после \(i \)-попаданий.

Анализ полученных данных для выживания разных дочерних потомков спироделы многокоренной показал, что для объекта исследований характерно образование более 10 различных форм инактивации клеток. Наши оценки параметров оценки выживания клеток по данным эксперимента и расчетов:

\[m \approx 10, \ a \approx 0,1, \ v \approx 1/10 \text{ ГР}. \]

Таким образом, опираясь на методы теории надежности можно рассчитать все необходимые параметры для модели на клеточном уровне.

Уровень субпопуляции клеток

В субпопуляциях зачатков основная функция клеток состоит в том, чтобы в делении обеспечить формирование некоторого критического числа клеток. Мы определили мерой выживаемости зачатка его способность из \(n_0 \) числа клеток сформировать некоторое достаточно большое критическое число клеток [6]. Такова его основная функция. Мы построили математическую модель радиационного поражения такой субпопуляции клеток после облучения в дозе \(D \). Предполагается, что клетки делятся независимо друг от друга и, имея разную степень поражения, формируют критическое число клеток \(N_k \). Выживаемость такой субпопуляции описывается формулой [2]:

\[P = \sum_{i=0}^{m-1} (1 - a)^i e^{-vD} (vD), \]
математическое описание радиобиологического эффекта (выживания) на уровне субпопуляции разного размера, и получена следующая модель:

\[S(p) = \left(\frac{1+\frac{p}{2}}{2} \right)^{-(\alpha-1)^T} \cdot \left(\frac{1-(1+p)^T}{1-2^T} \right)^{n_p N_s (1+p)^T}, \quad (2.7) \]

где \(S(p) \) – выживаемость субпопуляций зачатков размерами \(n_0 \); \(p \) – вероятность выживания одиночных клеток в составе меристемы при данной дозе облучения – \(D \); \(T \) – среднее число делений клеток данной субпопуляции до формирования необходимого критического количества клеток \(N_k \).

Эти числа \(T \) разные для различных \((n_0) \) субпопуляций. Так, для небольших субпопуляций поздних дочерних клеток они могут достигать до 10 митозов; для больших субпопуляций, состоящих из тысяч клеток, достаточно 1-2 митоза.

Наши расчеты и экспериментальные результаты показали, что \(N_k \) составляет приблизительно 10 тысяч клеток. По формуле (2.7) были рассчитаны теоретические кривые выживания субпопуляций разных размеров \((n_0) \) с разным допустимым числом митозов \((T) \) при разных дозах облучения \((D) \).

На рис. 2.8, представлены расчетные данные выживания субпопуляций разного размера, а на рисунке 2.9 – полученные экспериментальные данные выживания дочерних щитков разных генераций.

Рис. 2.8. Теоретические кривые выживания \(S(p) \) субпопуляций клеток разного размера \((n_0) \) по их способности в соответствующем числе клеточных делений \((T) \) создать \((N_k) \) критическое число клеток, достаточное для выживания особей при разных дозах облучения \((D) \).
Рис. 2.9. Кривые выживания \((N/N_0)\) дочерних щитков в разных по номерам генерациях (2-7)

Видно, что теоретические и экспериментальные кривые выживания для разных генераций по характеру, виду и по основным параметрам неплохо коррелируют друг с другом.

Особенно необходимо обратить внимание на форму дозовых зависимостей выживания. Так, если для клеток по модели Капульцевича, кривые выживания имеют классическую форму и заканчиваются экспоненциальным участком, то кривые выживания для субпопуляций имеют практически пороговый характер. Это связано с тем, что если дозы такие, что число выживших клеток способно за T-митозов сформировать критическое число клеток \(N_k\), достаточное для полного выживания особей, то выживаемость будет составлять 100%; а если не достаточно, то выживаемость будет равно 0. Поэтому возникает пороговый тип дозовой зависимости.

Уровень выживания всей меристемы. Тут естественная мера радиобиологического эффекта – количество сформированных дочерних щитков, поскольку основная функция меристемы – способность генерировать потомство. С учетом особенностей биологии объекта исследования понятно, что процесс генерации дочерних особей – процесс независимый, то есть практически действует параллельная схема обеспечения надежности генеративного процесса.

Структуру популяции меристемы можно представить в виде параллельного независимого функционирования субпопуляций зачатков, и все они обеспечивают непрерывность генеративного процесса. Естественной мерой выживаемости меристемы может служить относительный выход (число) генерированных дочерних щитков.

На рис. 2.10 представлена в виде плавной кривой дозовая зависимость выживаемости меристемы по ее способности генерировать щитки.

Рис. 2.10. Экспериментальная (пунктирная) и теоретическая (сплошная) кривые выживания меристемы спироделы многокоренной.

Видно, что в отличие от пороговых кривых выживаемости на уровне субпопуляций кривая для всей меристемы носит плавный характер. Исходя из идеи о параллельном независимом генерировании дочерних щитков, мы построили математическую модель выживаемости меристемы как сумму соответствующих выживаемостей отдельных субпопуляций \(S_i(p)\):

\[
S_n = \frac{\sum S_i(p)}{k}, \quad (2.8)
\]

где \(k\) – число дочерних щитков. Поэтому для формулы выживания меристемы, можно использовать упрощенную модель для параллельного процесса в виде суммы выживания дочерних потомков. Поскольку выживаемость изменяется от 1 до 0, то необходимо нормирование на общее количество дочерних генераций – \(k\).

По этой модели (2.8) и по модели выживаемости для отдельных субпопуляций (2.7) построена теоретическая кривая выживаемости, которая совпадает с ходом экспериментальной кривой (см. рис. 2.10). Это позволяет считать, что применение надежностного подхода к меристеме, как параллельной системе функционирующих субпопуляций, правомерно и полезно.

Организм данного растения в упрощенном виде можно представить в виде последовательной системы, состоящей всего из двух органов – основного критического органа меристемы и...
фотосинтезирующей ткани щитка и корневой системы. Последние можно объединить в один орган по той простой причине, что все эти ткани играют вспомогательную роль в основной генеративной функции. Специальные эксперименты показали, что в используемом диапазоне доз облучения (10-120 Гр) относительная радиочувствительность дифференцированных тканей не превышает 10% радиочувствительности генеративного органа. В силу последовательной надежностной структуры радиочувствительность организма на основе теории надежности может быть определена как произведение выживаемости меристемы и дифференцированных тканей. Поскольку выживаемость дифференцированных тканей \(S \approx 1 \), то выживаемость организма в целом описывается выживаемостью меристемы, что хорошо подтверждается в эксперименте (см. рис. 2.10). Использование надежностного подхода оправдало себя и в этом случае.

До сих пор мы рассматривали радиобиологические реакции многоклеточного растительного организма, абстрагируясь от процессов старения и от четвертого постулата. Влияние процессов старения в норме и при облучении отчетливо проявляется на кривых эффективности выхода дочерних щитков разных номеров (рис. 2.11). На организменном уровне наблюдается более четкий процесс старения (рис. 2.11). Установлено, что Спироеда многокореная проявляет четко выраженный процесс старения. Видно, что вероятность выживания щитков даже в контроле существенно уменьшается, начиная с 6-го дочернего щитка, а выход щитков в последних 11-14-й генерациях пренебрежимо мал [6]. При облучении процесс старения заметно ускоряется.

Для математического описания нормального процесса старения наиболее подходящей является модель и формула Гомпертца[7]:

\[
S_{ct} = N(t)/N_o = e^{-B \cdot R \cdot n},
\]

где \(S_{ct} \) – вероятность генерации щитков \(n \)-генерации; \(B \) – параметр скорости старения; \(R \) – параметр накопления ошибок, как основной причины старения.

По экспериментальным кривым старения в норме и при облучении, могут быть рассчитаны значения параметров процесса старения.

Анализ на основе теории надежности показал, что элементарные процессы радиационного поражения и старения независимы друг от друга. Это позволяет определить выживание организма как произведение выживания от радиационного поражения и выживания, определяющегося процессами старения. Математическое описание таких представлений позволяет предложить для оценки выживания организма такую простую формулу[2]:

\[
S_{opt} = S_m \cdot S_{ct},
\]

где \(S_m \) – выживание организма ряски, определяющееся выживанием меристемы, а \(S_{ct} \) – выживание ряски в процессе старения.

Для анализа реальных данных процессов старения при помощи формулы Гомпертца, удобно сделать преобразования этой формулы таким образом, чтобы привести ее к линейной форме. Это превращение следующего типа [2]:

\[
\ln(\ln(N/N_0)) = \ln B + R \cdot n
\]

Видно, что облучение в два раза повышает скорость процесса старения и мало влияет на параметр накопления ошибок.
Старение многоклеточных систем описываем в терминах гипотезы Сцилларда [8]. Из теории надежности можно предполагать независимость элементарных событий старения и радиационного поражения многоклеточной системы. Исходя из независимости, можно утверждать, что вероятность гибели биосистемы при облучении в данной дозе радиации может быть определена, как произведение вероятности гибели биосистемы от чисто радиационного поражения на вероятность гибели, вызванной процессами нормального и ускоренного радиацией процессов старения. При этом выживаемость на уровне субпопуляций может быть определена как произведение этих вероятностей [2]:

\[S_i(p) = S_s(p) \cdot e^{-Be^{\beta t}}(\beta - 1) \]

где: параметр \(\beta \) – показатель ускорения старения при облучении.

Таким образом, разработанные на основе теории надежности модели поражения многоклеточного организма, позволяют прогнозировать закономерности радиационного поражения на разных уровнях интеграции растений, учитывать участие процессов старения в радиобиологических эффектах. Полученные модели формируют перспективный подход к прогнозу и моделированию радиобиологических эффектов в многоклеточных системах на разных уровнях иерархии.

Данная модель (2.12) явно описывает вклад процессов старения в формирование радиобиологических эффектов. Видно, что чем больше время функционирования, тем больший вклад процессов естественного и ускоренного радиацией старения в выживаемость субпопуляции. Эта модель позволяет учесть роль процессов старения на разных уровнях интеграции, если заменить этой моделью \(S_i(p) \) во всех моделях (2.4), (2.5). Наши расчеты по реальному вкладу процессов старения в радиобиологический эффект на уровне меристемы для параметра \(\beta \) – показателя ускорения старения – показали, что он достигает значительной величины при больших дозах \(\gamma \) - радиации.

Результаты исследований показали, как на основе знания структуры объекта на разных уровнях иерархии, его функций и закономерностей радиобиологических реакций построена качественная модель радиационного поражения многоклеточного растительного организма. Модель состоит из четырех постулатов, в которых учтена вся основная феноменология радиобиологических реакций у многоклеточных систем. Предложенная нами количественная модель ориентирована на конкретный объект – высшее растение Спиродела многокоренной. Реакции других многоклеточных организмов могут различаться.

На уровне клеток различие может состоять в отсутствии большого разнообразия форм инактивации, в изменении параметра - \(a \), в изменении вида зависимости вероятности потери способности к делению от числа попаданий в клетку, в изменении радиочувствительности отдельных клеток.

На уровне субпопуляций возможны разные ситуации. Функционирование субпопуляций не нарушается, если из всех \(n_0 \) клеток сохраняет жизнеспособность лишь несколько. В других ситуациях может изменяться число циклов деления либо время эффективного функционирования для соматических клеток. Все эти варианты могут быть учтены в соответствующей конкретной модели. Сам подход к моделированию через адекватно выбранную меру выживаемости и с использованием идей и моделей теории надежности нам представляется весьма перспективным.

Структура популяций клеток из нескольких субпопуляций может быть различной, например, последовательно связанной, как в случае меристемы корня растений, отличаться общей численностью клеток и длительностью функционирования, а также скоростью и характером процессов старения. Все это может значительно изменить кривые выживаемости, но принципиальных трудностей в построении работоспособной модели пока нет.

Уровень популяции растений. Исследования изменения от дозы гамма-облучения количества растений в водной культуре Спироделы многокоренной позволили получить экспериментальные данные радиобиологических реакций уже на уровне популяции растений. Установлено, что начальный лаг-период меняется на кривую логарифмического роста количества особей в популяции растений. Можно получить также данные об изменениях численности жизнеспособных особей (зеленые щитки), нежизнеспособных (желтые щитки) и численности адаптивных форм (турионов – зимующих в водоемах форм данного растения).

Такая структура популяции растений Спироделы многокоренной в водной культуре. Мерой выживания на уровне популяции
естественно считали отношение скорости роста численности в опыте к скорости роста в контроле. На рис. 2.12 представлена кривая выживания на уровне популяции растений, а для сравнения показано кривую выживания на уровне растений, которые мы уже описывали[2].

Рис 2.12. Дозовые кривые выживания для популяции Спироделы многокоренной (C/d/C0). Тут выживаемость определяется отношением скоростей размножения растений при облучении и в контроле. Для сравнения тут приведены кривые выживания одиночных растений (N/N0) от дозы γ-облучения.

Видно существенную разницу в форме и в ходе кривых выживания на двух уровнях иерархии. Выживание на уровне организма постепенно уменьшается с дозой гамма-облучения, а выживание популяции вначале мало меняется, а позже, при дозах 60-80 Гр, резко падает. Природа таких расхождений понятна. При дозах облучения 60 Гр и меньше численность, и жизнеспособность ряски высока (около 20%), и растения способны поддерживать высокую численность популяции значительной скоростью размножения (Около 60%). Поэтому этот вид растения имеет возможность удерживать ареал существования, не дает конкурентам возможности себя вытеснить (в частности, другим видам ряски – Lemna minor, Lemna trysulka). При увеличении дозы до 80 Гр выжившие особи ряски (около 10%) уже не способны поддерживать существенную скорость размножения (около 9%), хоть их еще достаточно много.

В сосудах, где выращивают популяцию ряски, в начале эксперимента количество особей относительно мало, поэтому растения могут размножаться практически независимо друг от друга, то есть по параллельной схеме.

Для математического описания роста такой популяции предложено и показана возможность использовать дифференциальное уравнение[9]:

\[\frac{dN}{dt} = N(K - C) - E \cdot N^2 \]

где \(\frac{dN}{dt} \) – скорость роста численности популяции; \(N \) – численность жизнеспособных особей в популяции; \(K \) – параметр скорости роста численности популяции; \(C \) – параметр, характеризующий скорость гибели особей в популяции с учетом их старения; \(E \) – параметр, определяющий конкуренцию в популяции за счет недостатка минерального питания и снижения поступления света, что уменьшает эффективность фотосинтеза и питания особей.

Понятно, что параметр \(E \) начинает проявляться и действовать только при значительной численности популяции. По экспериментальным данным мы получили значения параметров этой модели для роста популяции (рис. 2.13). Показано, что с увеличением дозы облучения параметр скорости роста \(K - C \) существенно уменьшается, а параметр конкуренции \(-E \) возрастает.

Рис 2.13. Изменение величины параметров дифференциального уравнения роста популяции Спироделы многокоренной в зависимости от дозы гамма-облучения.
То есть построенная на основе теории надежности модель радиобиологического эффекта на уровне популяции растений адекватно описывает сущность процесса и полученные экспериментальные данные.

Таким образом, построено множество качественных и количественных моделей радиационного поражения биосистемы на разных уровнях иерархии. Полученные модели адекватно описывают наши экспериментальные данные для высшего растения – Спиродела многокоренной, для всех её радиобиологических реакций. Считаем, что предложенные подходы и модели на основе разработанной теории надежности биосистем после соответствую- щих изменений пригодны для описания радиобиологических реакций различных многоклеточных организмов. Заложенные в моделях представления создают метод для исследования радиобиологических и биофизических процессов в иерархических биосистемах. Используемые тут идеи и подходы, основывающиеся на теории надежности, могут найти широкое применение в исследованиях на различных иерархических биологических системах, что очень важно для радиобиологии и общей биологии.

2.1.1.6. Проблемы количественной радиобиологии многоклеточных организмов [2]
Исследования, проведенные на относительно простом растительном организме Спироделе многокоренной, позволили полностью количественно описать радиобиологические реакции на различных уровнях интеграции и получить совпадение прогнозов математических моделей и экспериментальных данных. Анализ полученных результатов позволяет сформулировать основные проблемы количественной радиобиологии многоклеточных организмов и указать пути их решения.

1. Основная проблема современной теоретической радиобиологии – создание адекватной системы мер радиационного поражения на всех уровнях интеграции. Речь идет о возможности количественно описать кривые выживания субпопуляций клеток, основные модели и экспериментальные данные обсуждаемы. Сущность процесса отдельных клеток, про выживание целого организма, как функцию выживания отдельных органов и тканей организма. Решение этой проблемы обозначает полное радиобиологическое описание сущности радиобиологических процессов у многоклеточных организмов и, в идеале, прогноз радиобиологических реакций на основании реакций отдельных клеток.

2. Следующая по значимости проблема состоит в том, что на высоких уровнях интеграции многоклеточных организмов в радиобиологическом эффекте работают динамические процессы формирования и реализации радиационного поражения. Чем выше уровень иерархии, тем больше времени необходимо для формирования поражения, и тем больше влияние на радиобиологический эффект имеет временной фактор. С увеличением временного фактора связана реализация всего разнообразия форм инактивации и форм выживания клеток, процессы восстановления и адаптации при радиационном поражении многоклеточных систем.

3. С увеличением времени радиационного поражения на высоких уровнях интеграции значительно возрастает роль процессов старения. Развитие процессов естественного старения и ускорение его при действии радиации может существенно влиять на радиобиологический эффект.

Исследования многоклеточного растительного организма Спироделы многокоренной показали пути решения этих проблем. Установлено, что каждому уровню иерархии удаётся поставить в соответствие адекватную систему мер радиационного поражения. Полученные нами данные о совпадении сущности явлений радиоустойчивости и надежности биосистем позволяют широко использовать идею и методы математической теории надежности. В основу выбора меры поражения и ее математического описания положены представления о структуре надежности исследуемой биосистемы на разных уровнях интеграции.

На основе вероятностной модели радиационного поражения клеток (2.5.) в общую модель вводится представление о разнообразии форм поражения клеток. Введение временного фактора, например, числа циклов деления клеток, в математической модели позволяет учсть роль такого разнообразия форм поражения клеток в эффектах на высоких уровнях иерархии. Показано соответствие теоретических модельных данных с результатами эксперимента. Исследования процессов старения у Спироделы многокоренной в норме и при облучении позволило разработать модель для оценки роли процессов старения в радиационном
поражении, получить значения параметров скорости процесса старения и параметра ускорения процесса старения в норме и при облучении. Конкретные экспериментальные и теоретические исследования, проведенные нами на многоклеточном организме, позволили решить сформулированные проблемы и построить адекватную количественную модель радиационного поражения организма.

Полученные данные имеют общерадиобиологическое значение и могут с успехом использоваться при создании количественной радиобиологии любого многоклеточного организма.

Анализ показывает пути и способы ориентирования разработанного нами общего подхода для конкретного многоклеточного организма. Такое ориентирование на клеточном уровне обозначает установление форм поражения и вызвивания при радиационном поражении клеток. На уровне клеточных субпопуляций для переориентирования модели необходимо установить конкретные меры формирования поражения субпопуляций клеток из поражения отдельных клеток.

Выбор меры поражения определяется принципом функционирования отдельных субпопуляций клеток или тканей, состоящих из таких субпопуляций. Это позволяет рассчитать выживание популяций клеток (тканей, органов) исходя из выживания отдельных субпопуляций. Мера выживания организма может быть определена расчетом на основании оценок выживания его составляющих тканей и органов и знания структуры обеспечения надежности организма из его органов и тканей.

Таким образом, выживание организма можно рассчитать, подставляя значения выживания органов в структуру надежности всего организма. Видно, что основная проблема построения количественной модели состоит, прежде всего, в установлении структуры надежности биосистемы на каждом уровне ее интеграции, теоретическими и экспериментальными методами. Последовательное введение математических моделей нижнего уровня иерархии в модель следующего уровня иерархии позволяет строить количественную модель радиационного поражения практически на любом уровне интеграции. Успех такого построения зависит от разнообразия экспериментальных данных и знаний о структуре обеспечения надежности исследуемого объекта.

В целом можно сказать, что проблема конкретизации идеологии и подхода теории надежности биосистем, еще далека от общего решения. Сложность состоит в том, что не всегда удается установить структуру элемента на разных уровнях иерархии. Тем не менее, мы считаем, что успешность подхода теории надежности к анализу радиобиологических реакций относительно простого многоклеточного растительного организма формирует такую надежду. Тогда, такой подход имеет высокую эвристическую ценность. Эвристичность может состоять в перспективе дискриминации и выборе наиболее адекватного механизма среди большого количества возможных. Мы считаем, что среди множества возможных механизмов процесса наиболее адекватный можно искать там, где обеспечивается необходимый уровень надежности. Есть возможность по оценкам параметра надежности или радиочувствительности на высоких уровнях иерархии определить характер структуры системы на нижних уровнях. Можно проводить специальные эксперименты с целью установления типа такой структуры. В этом аспекте исследовательская функция подхода с позицией теории надежности может быть очень значительной. Следует сказать, что исключительно структура надежности биологического объекта может не исчерпывать всю структуру. Ряд возможных механизмов, элементов и процессов, могут не иметь значения в плане обеспечения надежности, но все в структуре наиболее значащее в обеспечении системы надежности биосистемы будет значащим и для функционирования объекта.

Мы считаем, что надежностный подход достаточно полезный на пути становления синтетической биологии. В этом плане радиобиология, которая является всепроникающим инструментом через ионизирующую радиацию, может делать «прозрачным» тончайшую суть многоуровневой иерархической системы. Благодаря высокой разрешающей способности радиации на базе хорошо развитой теории надежности и на ее богатом математическом аппарате появляется интересная возможность радиобиологического структурного анализа биологических объектов.
2.1.1.7. Математическая модель ростовой реакции корня растения после облучения при участии репопуляционного восстановления

На основании концепции надежности биологических систем нами была построена математическая модель, описывающая поведение относительной скорости роста корня растения. Установлено, что для оценивания эффектов радиации на растениях можно использовать такие показатели, как длина корня или стебля, которые четко зависят от дозы гамма облучения. Показано, что длина корней и стеблей растений во времени меняется практически прямолинейно. Наклон этих прямых может служить мерой радиационного поражения.

Для оценки параметров этих прямых можно предложить такую формулу:

для контрольного варианта \(L_k = a_k t + b_k \),
где \(L_k \) – длина корня, \(a_k \) – скорость росту корня , \(t \) – время,
\(b_k \) – исходное значение длины проростков корней в начале эксперимента;

для облученного варианта \(L_t = a_t t + b_o \),
где \(L_t \) – длина корня, \(a_t \) – скорость росту корня , \(t \) – время, \(b_o \) – начальное значение длины проростков корней в начале эксперимента.

Тогда величина прироста корней \(\Delta L \) за время – \(\Delta t \) для разных вариантов будет выглядеть:

для контроля \(\Delta L_k = a_k \Delta t \),
для облученного варианта \(\Delta L_t = a_t \Delta t \).

Тогда исследуемый в экспериментах параметр относительной скорости роста корней для облученных вариантов за равный промежуток времени (практически \(\Delta t \) – во всех экспериментах равен суткам) может быть определен таким образом:

\[\text{ОСП}_{\text{опр}} = \frac{\Delta L_t}{\Delta L_k} = \frac{a_t}{a_k} \]
(2.14).

Построенные по такой формуле результаты экспериментов исследования \(\text{ОСП}_{\text{опр}} \) выглядят так, как это представлено на рис. 2.14 [10].

Рис 2.14. Динамика суточного прироста корней у проростков гороха- ОСР (а), и количество клеток меристемы корня (б) в пострadiaционный период (1 – контроль, 2 – гамма-облучение в дозе 4 Гр, 3-6 Гр, 4-8 Гр).

Исследованиями показано, что радиационное поражение всего растения в значительной степени определяется поражением его критической части – мериистемы. Поражение мериистемы удобно и адекватно характеризуется основной функцией – ростом корня. В упрощенном виде функция мериистемы определяется обеспечением поступления достаточного количества клеток из пролиферирующего пула мериистемы к зоне растяжения корня, то есть для обеспечения роста. Рост главного корня, а затем закладка дополнительных корешков формирует эффективную корневую систему растения, что обеспечивает рост и надежность всего растения. Исходя из того, что дифференцированные клетки достаточно радиоустойчивые, то радиационное поражение корней и растения в целом связано с поражением пролиферирующих клеток мериистемы. Поэтому предложенный и используемый показатель изменения относительной скорости роста (ОСР) корня может характеризовать степень поражения растения.

Подход с позиции теории надежности позволяет определить ее как систему последовательного типа, в которой клетки мериистемы поступают в зону растяжения и, таким образом,
обеспечивают рост корня. При этом под воздействием радиации в меристеме функционируют два относительно независимые
процесса: процесс реализации поражения клеток и процесс их
размножения в ходе пролиферации, то есть выполняется
репопуляционное восстановление меристемы.
Для четкости дадим определение репопуляционного восста-
новления меристемы. Репопуляционное восстановление меристемы
– это восстановление пула пролиферирующих клеток за счет
выживших клеток, или за счет клеток, которые не были поражены за
счет статистики Пуассоновского распределения или были
восстановлены на клеточном уровне, и/или за счет так называемого
центра покоя, который состоит из непролиферирующих клеток в так
называемой Go-фазе митоза. Известно, что подобные процессы
репопуляционного восстановления, свойственны системе
кроветворения у животных, многим опухолям и т.д.
Анализ на основе теории надежности этой системы позволяет
определить степень выживания корня, как величину ОСР, от
времени. В силу независимости двух вышеназванных
процессов может быть, определена как сумма вероятности (P1)
выживания меристемы во времени в ходе реализации поражения и
вероятности (P2) репопуляционного восстановления меристемы в
ходе процесса репопуляции в пораженной меристеме:

ОСР = P1(t) + P2(t) (2.15).

Известно, что процесс гибели клеток в популяции и процесс
их репарации описываются экспоненциальными зависимостями.
Математический анализ этих представлений позволил нам получить
следующую математическую модель для ОСР, и на основании
экспериментальных кривых (рис. 2.14) оценить числовые значения
некоторых параметров предложенной ниже модели:

ОСР = e^{-[at + bt_0]} \cdot \Theta(t - t_0) \cdot f(D) \cdot \left[1 - e^{-c(t - t_0)} + d(t - t_0)^2\right], (2.16)

где, по оценкам из эксперимента a = 0,14 – параметр,
характеризующий первичную реакцию клеток и вклад их
репарации; b = 0,035 + 0,01 D – параметр, характеризующий
tорможение роста в зависимости от дозы облучения; c = 0,065 –
параметр, характеризующий скорость репопуляции; d = 0,07 –
параметр, характеризующий насыщение процесса репопуляции;

t_0(D) – момент проявления явления репопуляции в ростовом
процессе; f – параметр, характеризующий степень обратимости
скорости роста в процессе репопуляции. При этом прямая
экспонента включает два параметра: a – характеризует первичные
поражения клеток и вклад репарации в отдаленную реакцию ОСР
корня; b – определяет степень торможения роста корня вследствие
массовой гибели клеток меристемы после облучения и зависит от
dозы гамма-облучения. Начиная с некоторого момента времени – t_0 –
на ОСР начинают влиять процессы репопуляции. С этого момента
на кривую ОСР начинает влиять величина – P_2(t) – вторая
экспонента, где функция – \Theta(t - t_0) – это дельта функция:

\Theta(t - t_0) = \begin{cases} 1, & \text{при } t \geq t_0 \\ 0, & \text{при } t < t_0 \end{cases} (2.17)

Был проведен анализ экспериментальных данных при
изучении кривых ОСР корней растений гороха после облучения
проростков разными дозами гамма-радиации. Расчеты показали, что
для этих процессов характерны значения параметров, приведенные
выше. Следует отметить, что величина параметра - a, не зависит от
dозы облучения, а величина параметра - b заметно возрастает с
дозой, что свидетельствует об увеличении гибели клеток с
повышением дозы. Параметры c и d не зависят от дозы для данных
из конкретного эксперимента. Значение t_0 – момента включения
влияния репопуляции на ОСР – существенно зависит от дозы.
Степень обратимости ОСР корня – f – также существенно зависит от
dозы гамма-облучения.

Разработанная модель адекватна и эвристична. Это позволяет
широко применять ее для анализа результатов эксперимента по
определению ОСР корня в различных условиях и при разных
влияниях.

Подход с позиций теории надежности в данном конкретном
случае позволил нам построить качественную и относительно
простую математическую модель явления репопуляции в ростовой
реакции корня. Параметры предложенной модели имеют четкое
биологическое содержание и характеризуют основные радиобиоло-
гические процессы в меристеме корня. Дальнейшее использование
этой модели поможет перейти к углубленному исследованию меха-
nизмов радиационного поражения корневых систем как критичес-
кой системы, ответственной за поражение всего растения. Разработанную модель можно модифицировать и для других биологических систем, в которых активно работают системы репопуляционного восстановления, в частности, для некоторых опухолей.

2.1.1.8. Радиобиологические эффекты и системы надежности растений

2.1.1.8.1. Исследование радиобиологических реакций на организационном уровне интеграции спироделы многокоренной

Наши исследования последних лет были направлены на изучение основных особенностей развития радиобиологического эффекта в многоуровневой системе многоклеточного растительного организма.

Цель подобных исследований – установление основных феноменологических особенностей развития радиобиологического эффекта с уровня органа (меристемы) до уровня целого организма. Спироделя многокоренной и роли организованного уровня в возникновении и реализации эффекта на нижележащих уровнях иерархии.

Схематически целый организм спироделы можно представить как взаимодействие меристемы (уровень M) с остальной дифференцированной частью растения (уровень D) в осуществлении основной генеративной функции растения – Y (рис. 2.15).

Как уже было подчеркнуто, у спироделы и других видов (см. рис. 2.15) уровни M от уровня D, что могло бы выразиться в равномерном поведении константы связи уровней M и D, либо нарастание (линейное) константы связи уровней с течением генеративного процесса (т. е. линейное увеличение константы связи уровней с номером генерации n). Линейное нарастание можно было бы связать с ростом времени пребывания в составе меристемы зачатков, с ростом номера генерации.

Для исследования этих вопросов мы поставили широкую серию экспериментов с применением математического планирования эксперимента. В этих экспериментах, кроме обычных факторов, применяющихся нами ранее (D – доза, γ – радиация, I – мощность дозы, τ – фракционирование дозы облучения), мы использовали еще два фактора: 4- (номер фактора в плане эксперимента) – варьирование освещенности при культивировании – от высокой освещенности в 3000 люкс до низкой – в 400 люкс, что соответствует существенному различию в фотосинтетической активности в фотосинтезирующей части щитка (уровень D); 5 – заметное варьирование полноценности питательной среды Хатнера при культивировании – от полной оптимальной среды до 0,2 полной среды. Эти два фактора позволили нам широко изменить состояние уровней D и оценивать его влияние на уровень M и на генеративную функцию Y (рис. 2.15).

Рис. 2.15. Схематическое представление организма в виде системы двух органов: M – меристема спироделы многокоренной, D – прочие органы растения, Y – генеративная функция.

У данного эксперименте, предусматривалось оценить влияние уровня D на состояние меристемы и на состояние субпопуляций отдельных зачатков.
2.1.1.8.2. Исследование радиобиологических реакций на уровне популяции растений Спироеды многокоренной

Модельная популяция создавалась за счет ограниченного объема питательной среды в чашке Петри. Здесь действовала схема конкуренции за питательную среду и за свет. Критерием, характеризующим состояние популяции, являлся общий выход щитков – организмов в популяции. Главное отличие было обнаружено в формах существования организмов в популяции. Для особей вне популяции были свойственны генеративная способность к генерации 10-14 дочерних щитков, затем гибель («пожелтение») щитков. Изредка наблюдалось появление адваптивных форм существования – туронов, особи в состоянии покоя (так называемые зимующие почки). Жизнеспособность популяции растений определялась величиной соотношением между тремя формами существования особей – жизнеспособное состояние (зеленые особи), состояние гибели – утраты генеративной способности (желтые особи) и состояние покоя (туроны). Изменения в составе популяции и определяли реакцию популяции на то или иное воздействие (рис. 2.16.).

Рис. 2.16. Рост численности популяции спироеды многокоренной по общему числу особей -O, по числу жизнеспособных особей -3, по числу нежизнеспособных особей -K, по выходу туронов -T в зависимости от времени (эти же обозначения на рис. 2.17-2.23).

Видно, что кривая роста популяции по численности имеет сигмоидальный характер. На 20-й день роста в популяции начинается процесс гибели щитков – появляются желтые особи. На 70-й день роста наблюдается выпадение туронов.

2.1.1.8.3. Исследование особенностей процесса старения на уровне популяции растений и влияние на этот процесс радиации

В специальном эксперименте нами получены данные о влиянии организменного уровня D на процесс старения, реализуемого через генеративную систему – меристему (M). Следует вспомнить, что процесс старения данного объекта описывается кривыми зависимости выхода N/N₀ в дочерних генерахиях (от 1 до 12) в норме и при облучении в разных дозах (см. рис. 2.11.). Кривые такого типа хорошо описываются с позиций теории Бейера и др., основанной на гипотезе Сциллардо о накоплении ошибок в процессе старения [8], через, упомянутое выше, уравнение Гомпертца (см. формулу 2.9.), где B – параметр скорости старения; R – параметр скорости накопления ошибок. После двойного логарифмирования можно привести формулу Гомпертца к более простому и удобному виду (см. 2.11).

Данное представление кривой старения позволило сравнительно легко оценивать параметры кривых. Нас интересовала зависимость параметров процесса старения от факторов, варьирующих состояние уровня D, а через него – их влияние на процессы старения меристемы.

Рассмотрим сначала параметр скорости старения. Среднее значение скорости старения B составляет 0,15. При низком уровне питания скорость старения увеличивается более чем в два раза (B = 0,39). При низкой освещенности скорость старения увеличивается по отношению к среднему значению в 1,5 раза (B = 0,22). Видимо, существует заметное влияние уровня интеграции - D на процесс старения, осуществимое посредством влияния уровня питания на скорость процесса старения. При этом нисколько еще не истощены пролиферативные возможности собственно меристемы.

Представляет интерес влияние уровня D на параметр скорости накопления ошибок R. Среднее значение скорости накопления ошибок в расчете на одну генерацию составляет 0,268, которую мы применем за 100 %. При выращивании спироеды на высоком уровне питания наблюдается повышение скорости накопления ошибок на 27 %. Вероятно, это происходит вследствие более высокой пролиферативной активности клеток меристемы при полной среде питания. Высокая скорость пролиферации может
приводить к большому накоплению в популяции мутантных клеток, что увеличивает скорость процесса старения за счет накопления ошибок. Аналогично при высоком уровне фотосинтетической активности при высокой освещенности при культивировании наблюдается повышение скорости накопления ошибок на 7 %. Таким образом, при высоком уровне освещенности и питания наблюдается повышение скорости накопления ошибок в то же время снижение скорости старения в меристеме спироделы.

Можно говорить о том, что процессы старения лимитируются и определяются не только теми процессами старения, которые реализуются на уровне клеток и клеточных популяций, но и в значительной степени могут зависеть от состояния организованного уровня данного растения. При этом высокая освещенность и полная среда снижают скорость старения, но вместе с тем увеличивают скорость накопления ошибок.

Для развития предложенной концепции о радиобиологических реакциях многоклеточных систем нами проводились экспериментальные исследования особенностей процесса старения на уровне популяций растений и влияния радиации на этот процесс. Предполагалось изучить особенности выбора и поведения меры радиобиологического эффекта на уровне популяции, роль динамического фактора и особенностей процесса старения на этом уровне.

Эксперимент проводили следующим образом: десять родительских пар щитков помещали в жидкую среду Хатнера [11] в чашки Петри. Так создавалась исходная популяция растений (лабораторная популяция). Общая среда создавала модель «мини-пруда», в котором в упрощенной форме проявлялись все популяционные отношения, а именно конкуренция за питательную среду и за свет. Неизбежное упрощение связано здесь с отсутствием межвидовых отношений, климатических колебаний, свойственных популяции спироделы многокоренной в естественных водоемах. Упрощение позволяет в этой модельной популяции отделить внутрипопуляционные отношения от ценотических. В опыте мы исследовали изменение численности особей в популяции со временем и изменение качественного состава при различных дозах облучения (от 20 до 120 Гр) и различном уровне питания и освещенности.

Общая феноменология поведения численности популяций спироделы следующая. Численность лабораторной популяции (сообщества) изменяется по следующему закону (см.рис. 2.16): сначала заметный лаг-период, потом период логарифмического роста и затем вывод на стационарный уровень. При этом по мере роста популяции намечается некоторая качественная структура популяции по степени ее жизнеспособности. На 60-е сутки роста в популяции появляется заметное число нежизнеспособных особей (желтые щитки – на графике обозначены - Ж). При этом рост числа жизнеспособных зеленых особей (3 – на графике) достигает максимума на 60-й день роста популяции, а затем происходит резкий спад за счет массовой гибели. Примерно в этот же период формируются турионы (Т) которые, находятся в обратимом состоянии. Массовая гибель особей в норме связана с резким проявлением процессов старения на уровне популяции. Такова основная феноменология процесса.

На рис. 2.17. дозовые зависимости выживаемости популяций (выживаемость определялась как отношение числа особей-щитков спироделы в опыте к их числу в контрольном варианте) в различные сроки роста популяции.

Видно, что в начальные сроки роста популяции (4, 8-е сутки) кривые выживаемости линейны, а затем искажаются и к 39-м суткам роста популяции приобретают явно выраженный S-образный пороговый характер. Пороговый характер кривых выживаемости
нетрудно объяснить в рамках предложенной концепции о радиобиологических реакциях многоклеточных организмов. В популяции растений наблюдается относительное независимое параллельное функционирование особей. Поэтому при малых и средних дозах радиации имеет место ситуация, когда число жизнеспособных особей достаточно велико и способно обеспечить высокую численность популяции. При увеличении дозы облучения выше порога создается ситуация с большим числом нежизнеспособных особей в популяции вследствие поражения и интенсивных процессов старения, которые уже не способны восстановить достаточно большую численность популяции даже за большое время размножения. Исчерпание дозовых кривых, с течением генеративного процесса при средних и высоких дозах облучения, объясняется тем, что со временем все больше проявляются радиационные повреждения зачатков и меристем в целом (здесь в явном виде проявляется большое влияние на радиобиологический эффект динамического фактора), а этот процесс, в свою очередь, заметно усиливается за счет процессов естественного старения и старения, ускоренного действием радиации. Таким образом, можно полагать, что динамические процессы и процессы старения определяют ход и характер дозовых зависимостей в популяции растений Спироаделлы многокоренной. По данным рис. 2.17 нами построена зависимость радиочувствительности популяции по величине ЛД₅₀ в зависимости от времени генерации (рис. 2.18).

Видно, что радиочувствительность популяции резко повышается со временем, в основном за счет интенсивных процессов старения, а затем уровень радиочувствительности стабилизируется. Полученные данные отчетливо указывают на заметную роль динамического фактора и факторов старения в радиобиологической судьбе популяции растений в системе экологического сообщества.

Для описания процесса роста популяции и влияния на этот процесс облучения мы использовали известную математическую модель роста популяции в виде дифференциального уравнения (см. формулу 2.13).

По этой модели мы провели обработку результатов экспериментов и рассчитали зависимости коэффициентов уравнения от времени. На рис. 2.13 представлено поведение коэффициентов от времени размножения. Видно, что (K – C) со временем убывает вдвое за счет процессов старения, а - E задает конкурентные отношения, которые в начале роста заметны, а затем убывают со временем. Такие данные получены в норме.

Рис. 2.19. Изменения в процессе роста популяции спироаделлы многокоренной параметров уравнения роста: (K – C) – скорость роста, E – конкуренция в популяции.

При облучении (см. рис. 2.13) картина несколько иная. Хорошо видно, что с увеличением дозы облучения резко падает скорость роста популяции, вероятно, за счет естественного и радиационно-индукированного процессов старения. В то же время резко возрастают с увеличением дозы конкурентные отношения в популяции вследствие массовой гибели и старения особей в популяции. Все это
отражает существенный вклад процессов ускоренного и естественного старения в жизнеспособность популяции (сообщества), которые реализуются через уменьшение скорости роста и возрастание конкуренции с увеличением дозы гамма-облучения.

Для выбора адекватной меры выживаемости мы исходили из того, что рост контрольной и облученной популяции описывается простой экспоненциальной зависимостью. Рост популяции в контроле описывается формулой

\[N^\text{конт}_t = N^\text{конт}_0 e^{C_0 t}, \]
(2.18)

где \(N_0^\text{конт} \) — исходное число особей в момент времени \(t = 0 \); \(N^\text{конт}_0 \) — число особей в популяции к моменту времени \(t \) в контроле; \(C_0 \) — скорость роста популяции.

Рост популяции при облучении описывается формулой:

\[N^\text{обл}_t = N^\text{обл}_0 e^{C_0 t}, \]
(2.19)

где \(N^\text{обл}_0 \) — число особей в облученной популяции к моменту времени \(t \), \(C_0 \) — скорость роста облученной популяции.

При определении выживаемости обычно определяют отношение численности особей в облученной популяции к численности в контроле:

\[\frac{N^\text{обл}_t}{N^\text{конт}_t} = e^{C_0 t - C_0}. \]
(2.20)

Видно, что логарифм отношения численности особей в популяции линейно зависит от времени роста. Для проверки этого обстоятельства мы построили график зависимости \((C_0 - C_D)\) от времени для разных доз облучения. Из графика (рис. 2.20) видно, что для всех доз облучения в полулогарифмическом масштабе в зависимости \((C_0 - C_D)\) от \(t \) наблюдается линейный ход кривых.

Такие кривые выживаемости целесообразно описывать параметром скорости роста популяции \((C_0 / C_D)\). Этот параметр наилучшим образом характеризует поведение популяции во времени для разных доз облучения и может служить адекватной мерой выживаемости на уровне популяции растений Спироделы многокоренной.

По методу наименьших квадратов по кривым рис. 2.23 были определены значения параметров скорости роста для разных доз \(\gamma \)-облучения и построена дозовая кривая выживаемости для популяций (см рис. 2.12.).

Видно, что логарифм отношения численности особей в популяции линейно зависит от времени роста. Для проверки этого обстоятельства мы построили график зависимости \((C_0 - C_D)\) от времени для разных доз облучения. Из графика (рис. 2.20) видно, что для всех доз облучения в полулогарифмическом масштабе в зависимости \((C_0 - C_D)\) от \(t \) наблюдается линейный ход кривых.

Такие кривые выживаемости целесообразно описывать параметром скорости роста популяции \((C_0 / C_D)\). Этот параметр наилучшим образом характеризует поведение популяции во времени для разных доз облучения и может служить адекватной мерой выживаемости на уровне популяции растений Спироделы многокоренной.

По методу наименьших квадратов по кривым рис. 2.23 были определены значения параметров скорости роста для разных доз \(\gamma \)-облучения и построена дозовая кривая выживаемости для популяций (см рис. 2.12.).
Надежность себя в данном момент времени, но и во всей динамике. Динамический постулат модели проявляется в возрастающей радиочувствительности со временем роста популяции вследствие проявления различных форм поражения и реализации процессов старения.

Процесс старения в популяции при облучении проявляется в резком снижении с дозой скорости роста, из-за роста параметров старения (естественного и индуцированного) и нарастания степени конкуренции в популяции. Пороговость в радиобиологическом эффекте на уровне популяции растений является следствием прежде всего высокой надежности способа размножения Спиридель многокоренной за счет последовательно-параллельной структуры, в ходе реализации в популяции недихотомической родословной. Здесь каждая особь является родоначальником новой цепи в процессе размножения и в зависимости от состояния дает тот или иной вклад в скорость роста всей популяции и в ее структуру по степени жизнеспособности. Наши исследования на уровне популяции подтвердили полноту и адекватность всей концепции применительно к уровню популяции растений, что позволяет говорить о возможности ее широкого использования.

2.2. Принципы анализа надежности биологических объектов

Напомним, что надежность биологической системы можно определить следующим образом: надежность - это способность биологической системы с определенной вероятностью функционировать значительное время в реальных условиях среды.

Биологические системы обладают множеством функций, которые при действии различных факторов могут менять свои характеристики (усиливаться или ослабляться) или даже полностью отказывать. Будем называть отказом функции биологической системы такое ее состояние, когда уровень функционирования находится ниже порогового уровня (например, 50% оптимального значения эффективности функционирования).

Поскольку в биологической системе все функции взаимосвязаны, то отказ ее как целостного образования также может произойти при отказе определенного (порогового) числа функций.

Надежность сложной системы обеспечивается: надежностью ее элементов, существованием систем восстановления поврежденных элементов и их резервированием.

Надежность самих по себе элементов определяется их способностью сохранять значения своих параметров в условиях действия стрессоров.

Восстановление является одним из основных механизмов, обеспечивающих надежность функционирования биосистем. Определим восстановление (процесс и результат) поврежденного (отказавшего) элемента как возврат его в исходное состояние или замену отказавшего элемента системы на исправный, который воссоздается по сохранившимся шаблонам или продуцируется путем пролиферации, элементов, сохранивших свои показатели, в пределах нормы или берется из резерва элементов. Последнее означает, что еще одним фактором надежности системы является наличие структурной и функциональной избыточности ее элементов. Структурное резервирование — наличие в системе избыточных элементов или подсистем, находящихся в различных режимах функционирования (см. рис. 2.1) - ненагруженном (холодном), малонагруженном (теплом) и нагруженном (горячем) состояниях [4]. В зависимости от режима работы с той или иной скоростью резервные элементы вступают в функционирование вместо отказавших рабочих элементов. Кроме структурного резервирования, у биологических систем различают и другие типы резервирования. Временное резервирование — метод повышения надежности объекта, предусматривающий использование избыточного времени. Информационное резервирование — использование избыточной информации. Функциональное резервирование — использование способности элементов выполнять дополнительные функции — и так далее.

В целом можно сказать, что надежность технической системы может быть определена на уровне проектирования путем создания удачной схемы, оптимально использующей различные типы восстановления и резервирования. Техническим механизмам свойственна одна важная закономерность: когда схемы выбираются таким образом, чтобы элементы длительного использования восстанавливались, а элементы кратковременного использования резервировались.

Существенная трудность, с которой мы встречаемся при анализе надежности биосистем, заключается в том, что структура этих систем малоизучена.
Применение и развитие теории надежности для биологических объектов создает возможность с помощью идей и методов данной теории с достаточной эвристичностью изучать структуру биосистемы и способы обеспечения надежности, заложенные в данной структуре.

Рассмотрим факторы, действующие на живой организм и вызывающие его отказы. В качестве действующих факторов (внутренних и внешних) могут рассматриваться любые факторы биогенной и абиогенной природы, которые приводят при превышении некоторого уровня (порога) к появлению отказов и к увеличению интенсивности отказов в элементах, подсистемах, в результате чего и в целой системе. При этом в качестве рецепторов на воздействие внутренних и внешних факторов выступают элементы системы, а не система в целом, и отказы оценивают по отказам функций, свойственных и выполняемых данной системой или элементом. Под отказом при этом предлагается понимать утрату работоспособности элемента или системы. При этом после воздействия проходит некоторый период времени, когда первый отказ формируется в отказ элемента. Отказы относятся к статистическим повторяющимся событиям, происходящим в процессе нормального функционирования и при экстремальных нагрузках на систему. Всякие другие повреждения в системе, не удовлетворяющие этим условиям, следует, видимо, относить к категории повреждений, не свойственных системе, и по отношению к которым не эффективны системы надежности.

Для технических систем, возможно, перечислить ряд внешних и внутренних факторов, вызывающих отказы, и определить надежность системы в этих условиях. Отличие биологических систем от технических в этом плане состоит в том, что внутренние и внешние факторы, вызывающие отказы в биосистемах, никогда полностью не известны, не ясно место их воздействия и механизм формирования отказов от каждого из факторов[4]. Можно сказать, что исследование надежности биосистемы должно включать как необходимый элемент изучение характера, количества и типов внешних и внутренних факторов, вызывающих отказы элементов и биосистемы. Эвристичность теории надежности при анализе биосистемы в первую очередь может состоять в определении круга внешних и внутренних факторов, вызывающих отказы, что определяется элементами системы, ее структурой и способами функционирования. Изучение этого вопроса является одной из основных задач исследования надежности биологических объектов. В технике существует хорошо разработанная классификация отказов, которая в целом применима к анализу надежности биосистем, но требует развития в связи с тем, что определение и классификация отказа в биосистеме не очевидны и являются предметом либо индуктивного (от отказа системы к причине отказа, к отказу элемента) либо дедуктивного анализа (от отказа элемента к отказу системы). Отказ по характеру изменения параметра системы делится на внешней или постепенный, полный или частичный; по характеру связи между отказами - на зависимые или независимые отказы; по внешним проявлениям отказа - на очевидные или скрытые отказы. По причинам возникновения отказы бывают конструкционные, отказы вследствие ошибок при изготовлении, эксплуатационные отказы, естественные и искусственные.

Важное отличие биологических систем от технических состоит в том, что в технике все внешние воздействия могут быть предусмотрены и систему можно испытать на надежность к любому из факторов, а в случае биологических систем множество внешних факторов, вызывающих отказы, не может быть предусмотрено, в особенности трудно предусмотреть время и уровень воздействия экстремальных факторов среды, неизвестны также комбинации воздействующих факторов. Важной характеристикой биосистем, которую можно, видимо, получить при анализе надежности биосистем, являются прогноз поведения данного объекта в неизвестных заранее условиях среды на основе знания структуры обеспечения надежности системы, и классификации действующих факторов по реакции на них систем надежности.

Здесь отчетливо проявляется действие принципа фундаментальности характеристик надежности биосистем, состоящие в данном случае в том, что место возникновения отказа, тип отказа, способы его устранения и реализации определяются не только и не столько первично воздействующим внешним фактором, а в первую очередь структурой, устройством системы, т. е. фундаментальными свойствами, сформированными и закрепленными в процессе эволюции объекта. Позднее мы вернемся к принципу фундаментальности.
Биологическая система по своей структуре, видимо, является системой строго иерархической [2], что отражается на ее надежности. Рассматривая простейшую иерархическую систему из n-уровней (см. рис. 2.2.), нетрудно показать, что система с иерархическим принципом организации структуры заметно надежнее, чем другие типы структур (автономного типа и пр.). Рассматривая граф иерархической системы, можно проследить судьбу отказа, возникшего на нижнем уровне иерархии. Допустим, что вероятность отказа элементов нижнего уровня составляет \(P_1 \), то вероятность формирования из него отказа на втором уровне будет составлять величину \(P_2 \leq P_1 \), что зависит от способа, по которому элементы \(a_1, a_2, a_3 \), и т. д. формируют элемент \(-b_2 \), т. е. в зависимости от надежности организации элементов \(b \) из элементов \(-a \). В худшем случае последовательной схемы соединения, когда отказ \(-a \) однозначно вызывает отказ элемента \(-b \), \(P_2 \) будет равно \(P_1 \). Во всех других схемах образования элемента \(b \) из элементов \(-a \), надежность элемента \(b \) должна быть выше надежности элемента \(-a \). Проведя подобный анализ для всех уровней иерархии, можно видеть, что чем большее число уровней и элементов на этих уровнях образуют биосистему, тем выше ее надежность, а при заданном уровне надежности, тем ниже требования к надежности элементов нижележащих уровней иерархии. Это важное преимущество иерархических систем широко используется в структурах биологических объектов. Отсюда видно, что в иерархических системах заметно снижены требования к надежности элементов уровней и чем ниже уровень иерархии, тем ниже требования к надежности его элементов. При этом важно, чтобы структура системы допускала необходимое резервирование и восстановление элементов. Исходя из иерархического принципа, можно сделать вывод, что чем элементарнее, ниже уровень иерархии, на котором происходит отказы, тем выше надежность иерархической системы. При повреждениях, возникающих на элементах высоколежащих уровней иерархии, надежность системы заметно снижается вследствие утраты преимуществ части иерархической системы. Следует отметить, что воздействующие факторы среды (радиация), как правило, оказывают влияние на систему на самом элементарном — нижнем — уровне иерархии, на молекулярном и атомном уровнях, так как рецепторами, воспринимающими энергию внешнего воздействия, являются атомы и молекулы. Таким образом, чем выше уровень иерархии, где находится рецептор, на данное внешнее воздействие, тем ниже надежность системы при всех прочих равных условиях. (Такая картина при механических повреждениях). Все выше сказанное подтверждает фундаментальность свойства надежности, которая, как мы видим, существенно зависит от структуры системы и заложена в ее устройстве. Можно предположить, что устойчивость к конкретному типу воздействия зависит от того, сколько элементов и какого уровня иерархии затрагиваются данным воздействием, какова надежность элементов данного уровня иерархии по отношению к данному воздействию. Особенностью биологической системы, как иерархической является то, что это свойство системы проявляется и разворачивается во времени и формирование отказов на разных уровнях требует различного времени. При этом, чем выше уровень иерархии, тем больше времени требуется для формирования отказа элемента. В биологических системах особую важность приобретают системы перехода между уровнями, определяющие организацию иерархической системы и вероятность передачи повреждения — отказа с нижележащего уровня иерархии на выше лежащий уровень.

Изотропность (одинаковость) элементов одного уровня иерархии, например клеток, выполняющих одинаковую функцию, обеспечивается действием и широким использованием в биосистемах матричного принципа. По определению Н. В. Лучникова [4], матричный принцип сводится к тому, что построение структур, несущих больший объем информации, а значит, и имеющих большую вероятность в случае отказа сформировать отказ на вышележащем уровне, осуществляется с помощью расположения элементарных единиц данной структуры на матрице и дальнейших их синтез.

Принцип иерархичности в осуществлении репродуктивной функции подробно проанализирован и сформулирован в виде эстафетного принципа, согласно которому «воспроизведение сложных образований, построенных из большого числа идентичных (или сходных) структур, осуществляется путем передачи репродуктивной функции лишь одной из новообразованных структур. Этот принцип касается связи между различными
уровнями организации живых организмов, другими словами, формулирует закон, по которому соответствующие структуры строятся из структур низшего порядка. Сложные организмы строятся иерархически, причем последовательные уровни строятся поочередно, то из двух, то из многих элементов предыдущего уровня» [4] (см. рис. 2.3.).

Здесь достаточно подробно описан иерархический принцип организации биосистемы по отношению к функции воспроизводства. К данной схеме вполне применим анализ, который мы провели выше, по надежности иерархических систем. Проявление такого эстафетного принципа может означать, что из множеств элементов одного уровня функционирует и может передать свой отказ только один элемент. Если таким элементом является случайно избранный из двух или множества элементов, то система является более надежной, чем система с заранее выбранным элементом эстафеты, так как вероятность отказа конкретного выбранного элемента составляет Р, а вероятность отказа, произвольно выбранного из М одинаковых элементов, равна Р/М, т. е. в М раз меньше.

Каждый биологический объект или система занимает определенное место в иерархии ниже- и вышележащих уровней биологической организации (см. рис. 2.3.).

Каждый из уровней биоиерархии состоит из элементов — подсистем, включающих в себя элементы нижележащих уровней. Каждый биологический объект является элементом соответствующего уровня иерархии со свойственными ему функциями. Сравнение надежности биологических объектов следует, видимо, проводить между элементами одного уровня иерархии по соответствующей мере. На каждом из уровней иерархии определяются и их основные функции, отказы функций и элементов.

В соответствии с характером основных функций биологического объекта, исследуемого на конкретном уровне биоиерархии, определяется соответствующая мера надежности. Поскольку элементам различных уровней свойственны разные основные функции, то и меры надежности различные. Например, при сравнении двух экосистем можно предполагать, что более надежной является та, которая имеет большую размерность пространства варьируемых факторов. Такое свойство биосистемы может обеспечить ей более надежное и эффективное функционирование в случайно изменяющихся условиях внешней среды и во времени. В качестве безразмерной численной меры надежности экосистемы предлагается отношение размерности данной экосистемы к общему числу экологических факторов, свойственных биосфере. На уровне биоооценозов можно оценивать их надежность по количеству видов, находящихся в состоянии высокоэффективного функционирования, к общему числу видов в биоооценозе.

Надежность популяции организмов целесообразно определить через отношение объема оптимальной зоны экологической ниши к объему всей экологической ниши, определяющей пределы выносимости вида. Таким образом, удается получить оценку надежности элемента на каждом из уровней биоиерархии, последовательно формируя соответствующие количественные меры надежности, свойственные элементам всех вышележащих уровней иерархии. Такой метод может позволить сделать апрорную оценку надежности организмов различных видов, принадлежащих разным популяциям, биоооценозам и экосистемам. Наличие характеристик надежности биообъекта может позволить сделать прогноз надежности данной системы в самых разнообразных случаях выживания видов, не имея данных о структуре самой системы, только на основании оценок надежности элементов вышележащих уровней биоиерархии.

Из всего сказанного вытекает принцип фундаментальности свойства надежности биологических объектов. Надежность экосистем в условиях нормальных и экстремальных воздействий определяется свойствами системы: надежностью элементов, типом и характером организации структуры системы, функционированием заложенных в ней систем обеспечения надежности, сформированных в свою очередь в ходе эволюции организма и зависящих от положения системы в общей биоиерархии, которая определяет и формирует фундаментальные свойства биосистем.

Надежность биологических систем проявляется в условиях нормального функционирования и обеспечивает его. Можно полагать, что данные условия среды являются нормальными благодаря системам обеспечения надежности, которые были сформированы на предшествующих этапах эволюции данного объекта. Кроме нормальных условий функционирования, на
систему могут оказывать и оказывают воздействие различные экстремальные факторы среды. В биологии это явление получило название устойчивости биологических объектов к различным внешним экстремальным воздействиям. Результат любого экстремального внешнего воздействия можно представить как повышение частоты и интенсивности отказов во всех или отдельных элементах системы. Устойчивостью будем называть форму проявления надежности в конкретных условиях внешней среды. Понятие надежности носит фундаментальный характер, а понятие устойчивости — прикладной. С надежностью биологических систем непосредственно связано свойство адаптации, о котором речь пойдет в соответствующем разделе.

При исследовании надежности биологических систем особые требования предъявляются к методам и схемам их испытания. Если мы ограничимся задачей сравнения надежности двух биологических объектов в конкретных условиях, то подобная задача сравнительно легко решается. Проводятся испытания надежности объектов и фиксируются отказы системы. В результате такого сравнительного испытания могут быть получены необходимые параметры надежности объектов, среди которых могут быть выделены наиболее устойчивые в данных конкретных условиях испытания. Основная задача, которую должно выполнить испытание с помощью соответствующих схем и методов, это анализ структуры самой системы и анализ системы обеспечения ее надежности. Для целей подобного фундаментального подхода к изучению биологического объекта необходимы специальные «анализирующие» схемы и методы испытания [5], которые позволяют получать глубокие сведения о работе системы и о функционировании ее систем надежности. Эти вопросы будут обсуждаться в дальнейшем.

Допустим, что нам удалось за счет подбора схемы испытания оценить основные характеристики систем надежности, т. е. оценить надежность элементов системы, определить возможное количество и типы систем восстановления элементов, оценить характеристики и принципы работы различных систем резервирования, их кратности, скорости включения, режимы работы, взаимодействие, число каналов восстановления. Все это получить довольно трудно, и все-таки не означает, что задача исследования надежности биосистемы решена [2]. Известно, что система заданной надежности из заданного числа элементов, с заданными характеристиками, может быть построена множеством способов [4]. Неоднозначность — важное обстоятельство, которое может возникнуть при исследовании надежности биосистем. Другая особенность, это то, что биологические системы сложны, а уровень экспериментальной возможности не позволит провести все необходимые схемы испытания. Такие свойства биосистем требуют самого широкого применения метода моделирования системы надежности биологического объекта. Методы моделирования могут быть различными; начиная с логического моделирования путем построения блок-схем функционирования систем обеспечения надежности организма и кончая математическим моделированием. Необходимо отметить, что задача математического моделирования в случае биосистем существенно отличается, от применяемой по отношению к техническим системам. В этом случае математическое моделирование решает прямую задачу — определение параметров той или иной системы. В биологии задача обратная. В математическое моделирование биосистем входит построение математических моделей процессов или объекта с использованием данных, полученных в разнообразных специальных анализирующих испытаниях надежности биологических объектов, с использованием знаний о биологических особенностях объекта [2]. Затем, построенную модель первого приближения, на ее основании необходимо рассчитать оценку параметров надежности объекта и сравнить с теми оценками, которые получены в соответствующих испытаниях. Если наблюдается хорошее соответствие, необходимо провести специальные испытания, позволяющие оценить параметры, введенные в модель априорно на основании теоретических предположений о структуре системы и особенностях ее функционирования. Хорошее совпадение значений этих параметров говорит в пользу правильности поступатов самой модели, т. е. могут быть разработаны несколько моделей, адекватно описывающих систему и ее надежность. Окончательная дискриминация моделей производится в ходе специального испытания. При этом проверяются состояние и надежность системы в различных экстремальных ситуациях, причем эксперимент позволяет сравнить расчетные значения параметров с экспериментальными и тем самым произвести дискриминацию моделей. Варьируя типы и уровни внешнего

101
воздействия и проводя дальнейшие сравнения теоретических и экспериментальных значений параметров, можно добиться желаемого соответствия между моделью и исследуемым объектом. Такая циклическая процедура моделирования и экспериментирования позволяет строить вполне адекватные и эвристические модели биологических объектов и их систем надежности.

2.3. Методы испытания надежности биологических систем

Существуют следующие задачи испытания биологических систем на надежность: определение количественных параметров надежности; выявление принципов и закономерностей формирования и работы систем, обеспечивающих биологическим системам чрезвычайно высокую надежность. К биологическим объектам в принципе применимы методы испытания технических систем. Для этого вводят в испытание достаточно большую выборку биологических объектов и фиксируют во времени отказы, происходящие в системе. Понятие отказа определяется заранее. Если объект допускает проведение достаточно длительных испытаний, то в результате мы можем получить зависимость вероятности безотказной работы - \(P(t) \) от времени \([2,4]\). Используя эту зависимость, можно получить количественные оценки различных критериев надежности биологических систем. В подобных испытаниях, проводимых по аналогии с испытаниями технических систем, можно решить задачу определения количественных критериев надежности. Другая задача испытаний — изучение природы надежности — требует постановки специального анализирующего типа испытаний. Подобная схема испытаний должна обеспечивать изучение систем надежности биологических объектов, т. е. механизмов восстановления и резервирования. Данная система испытания, по-видимому, будет представлять собой систему ускоренных, форсированных испытаний надежности, в результате которых необходимо получить данные о системах надежности биологического объекта не только и не столько для условий форсированного режима, а для нормального состояния системы. Далее мы остановимся на особенностях подхода теории надежности к анализу сложных систем путем проведения специальных анализирующих схем испытания, к принципам выбора схем испытания.

2.3.1. Ускоренные испытания биологических систем \([12]\)

Основными свойствами, которыми должна обладать ускоренная схема испытания, являются: а) универсальность схемы; б) выполнение принципа адекватности в ходе испытания; в) возможность проведения анализа системы — «анализируемость».

Универсальность схемы испытания необходима для того, чтобы иметь возможность проводить испытание надежности самых разнообразных объектов с учетом их эволюции, положения в общей биоиерархии, проводить сравнение фундаментального свойства надежности у различных объектов не только в условиях испытания, но и давать данные, позволяющие сделать прогноз надежности биосистем в случайно варьирующих условиях среды и во времени. Без свойства универсальности подобная схема испытания не имеет смысла и не может служить для анализа структуры биосистем и их систем обеспечения надежности.

Ускоренная схема испытания должна удовлетворять принципу наследственности — адекватности, который в теории надежности \([2, 12]\) означает, что в ходе ускоренных испытаний системы типа и характеристики возникающих отказов не должны качественно отличаться от тех, которые возникают в нормальных условиях, а исследуемая система при этом не изменяет принцип функционирования. Ускоренная схема испытания биосистем должна служить целым анализу структуры системы, и особенно оценке характеристик систем восстановления, и различных систем резервирования, т. е. применяемые факторы воздействия, схемы их применения, математическая обработка результатов должны помогать проводить оценку и анализ системы.

Главной задачей испытания надежности биосистем является исследование структуры системы в ее фундаментальных свойствах и характеристик, в их числе характеристики систем обеспечения надежности биообъекта. Проведя испытания надежности биосистем в условиях нормального функционирования, мы не можем получить характеристики системы, так как такая схема не обладает анализирующими свойствами. Кроме того, заметим, что исследование надежности высоконадежных систем в нормальных условиях, а биологические системы высоконадежны, требуют чрезмерно больших выборок и времени испытания.

После этих общих замечаний перейдем к обоснованию выбора воздействующих факторов, схем испытания и методов анализа...
Полученных данных. Выбор универсальной анализы-щей схемы испытания зависит в первую очередь от действия экстремально-
ного фактора (или факторов), увеличивающего интенсивность отказов. Такое увеличение интенсивности отказов в системе, в подсис-
темах и элементах, при условии возможности ее варьирования, может позволить получать инструмент для исследования принципов работы, механизмов и характеристик систем надежности биологических объектов. Суть сказанного состоит в том, чтобы, несколько увеличивая интенсивность отказов, не изменять существенно их типа и характеристики по сравнению с отказами в нормальных условиях, исследовать биосистему. Необходим фактор, который вызывает появление отказов случайно, стохастически, как и в нормальных условиях, при этом отказы должны возникать на самом нижнем элементарном уровне иерархической структуры системы. В этом случае мы можем получить средство для анализа структуры всей биосистемы от самого нижнего до верхнего уровня иерархической структуры системы [2;13].

На наш взгляд, такими свойствами в полной мере обладает широко применяемый радиобиологами фактор редкоионизирующей радиации (рентгеновские и γ-лучи). В дальнейшем мы попытаемся обосновать то, что редкоионизирующая радиация является наиболее подходящим фактором для универсальной схемы испытания надежности биологических систем, удовлетворяющих требованию анализуемости и выполнению принципа автомодальности или наследственности.

Приведем необходимые минимальные сведения и определения из теории случайных процессов [2;14].

Пусть
— промежуток времени, который нас интересует;
— вероятность появления — событий потока (отказов) за промежуток времени . Тогда при : 0, 1,2,3... с большой точностью выполняется равенство:

(2.24)

где — параметр хорошо известного радиобиологам распределения Пуассона [2,14], который характеризует интенсивность поступления событий потока (отказов).

Простейший поток обладает следующими тремя свойствами:

1. Стационарностью. Для любой группы конечного числа непересекающихся интервалов времени вероятность появления в них соответственно , события (отказ) зависит лишь от этих чисел и длии промежутков времени. В частности, вероятность появления — отказов в промежутке времени не зависит от и является лишь функцией и . 2. Отсутствием последствия. Это свойство означает, что вероятность наступления —событий потока в продолжение промежутка времени не зависит от того, сколько событий отказа наступило до этого промежутка. 3. Ординарностью. Это условие выражает практическую невозможность двух и большего числа событий отказа за очень малый промежуток времени. Поток, удовлетворяющий этим трем условиям, называется простейшим и полностью определяется равенством (2.24).

Известно, что поток редкоионизирующей радиации фактически является простейшим потоком. Нетрудно показать, что облучение и результат его в виде стохастического возникновения во всей биологической системе первичных повреждений, при соответствующих ограничениях на интенсивность потока для ординарности, могут считаться простейшими.

В процессе нормального функционирования биологической системы на нее постоянно оказывают влияние множество случайных факторов среды в случайной комбинации при случайном значении уровней факторов. При этом уровне воздействующих поражающих факторов (т. е. вызывающих отказы в элементах) не могут быть высокими, так как тогда условия были бы экстремальными [2].

Мы полагаем, что в процессе нормального функционирования на биосистему воздействует множество факторов среды, в результате чего в биологическом объекте возникает множество малых простейших потоков отказов, независимых друг от друга, каждый из которых в малой степени влияет на биосистему. Следует вспомнить теорему Хинчина [15]: «Предположим, что интересующий нас поток является суммой очень большого числа независимых между собой стационарных потоков отказов, каждый из которых мало влияет на сумму отказов. Тогда суммарный поток при дополнительном ограничении арифметического характера, гарантирующем однородность суммарного потока, оказывается
лируемых или близким к данной безотказной работе в ускоренном испытании по сравнению с нормальным режимом функционирования.

Для предварительных испытаний выполнения принципа наследственности можно предложить два основных метода. 1. Метод равных вероятностей, который базируется на двух случайных выборках из одной и той же партии. Одна из них в нормальном режиме Ео, а другая в форсированном. В ходе испытаний фиксируются моменты времени отказов систем. По полученным данным находят функции \(\tau = \phi(t, E^*, E_0) \) (пересчета времени ускоренного испытания) как геометрическое место точек A (рис. 2.23.), соответствующее равным квантилям, площадям \([2,12]\) под кривыми плотности вероятности. Если кривая - А имеет линейный характер, то это означает выполнение принципа наследственности в ходе ускоренного испытания. 2. Метод суммирования повреждений. Допустим, что мы испытали выборки биосистем в нормальном режиме Ео в течение времени \(\tau \), затем уделевшие (неотказавшие) системы доводят до полного отказа в форсированном режиме \(E^* \). Тогда имеет место соотношение

\[
M(\tau \leq t/E_0)/T(E_0) + M(\tau > 0/E^*)/T(E^*) = 1, \tag{2.21}
\]

где \(T(E_0) \) и \(T(E^*) \) — средние сроки службы систем в разных режимах, \(M(\tau \leq t/E_0) \) — среднее время безотказной работы в нормальном режиме, \(M(\tau > 0/E^*) \) — в форсированном. Иногда этот метод называют методом «долговывживания». Если соотношение (2.21) выполняется, то можно считать, что выполняется принцип наследственности. Таковы основные методы экспериментальной проверки выполнения принципа наследственности.

В целом использование редкоинициирующей радиации в качестве фактора ускоренного испытания, не нарушает условия автомодальности — наследственности. В ходе ускоренного испытания функции биосистемы не изменяются столь существенно, чтобы изменился закон функционирования системы.

Анализирующее испытание[2]. Первые два условия — универсальность и наследственность — можно обосновать теоретически или экспериментально. Третье условие — анализируемость — означает возможность анализа систем обеспечения надежности
объекта при схеме ускоренных испытаний с использованием в качестве воздействующего фактора ионизирующей радиации. Следует сказать, что полностью универсальной анализирующей схемы испытания не существует. Но, тем не менее, можно сделать ряд замечаний и обобщений. Исходя из теории надежности и модели обеспечения надежности системы (см. рис. 2.1), видно, что основными системами обеспечения надежности являются надежность элементов системы восстановления и резервирования. Анализируя эту общую модель, можно предложить несколько типовых схем испытаний. Возможность анализа собственной надежности элементов биосистемы (клеток) определяется возможностью ставить эксперименты по оценке надежности отдельных элементов системы, лишенных взаимодействия. Если биологический объект не позволяет проводить эксперименты для оценки надежности элементов, то эту оценку можно проводить с использованием метода математического моделирования. Второй тип схем испытания предназначен для изучения функционирования систем восстановления. В качестве такой схемы можно использовать широко известный метод варьирования мощности дозы ионизирующего излучения. Идея этого метода базируется на том, что восстановительные системы (в теории надежности — каналы восстановления) работают с конечной скоростью и число таких каналов может быть ограничено. Это означает, что если в системе с помощью облучения индуцировать большое число отказов при высокой мощности облучения, то эффективность работы восстановительных систем может оказаться недостаточной для устранения столь интенсивного потока отказов, и поэтому возрастет число отказов системы. Применяя варьирование мощности дозы облучения, можно получить зависимость эффективности работы восстановительных систем и по ним, с помощью соответствующих математических моделей, оценить различные свойства восстановительных систем. Математическая модель системы с каналами восстановления подробно рассмотрена в работе А.И. Кочубинского [16]. Возможно, изменения дозы облучения и мощность дозы, установить число различных восстановительных систем, число каналов восстановления в каждом из типов восстановительных систем, их взаимодействие, скорость работы каналов. Успех применения подобной схемы испытания зависит от правильности выбора схемы испытания, от биологических особенностей объекта исследований и наличия специально разработанных математических моделей. Целесообразно в данной схеме испытания для дифференциации различных типов восстановления применять кроме облучения другие факторы воздействия (температура и пр.). Следующим важным типом испытания являются схемы, предназначенные для идентификации числа типов резервирования и их характеристики. Из общей модели надежной системы (см. рис. 2.1) можно видеть, что включение резервных элементов зависит от числа рабочих элементов (k) в системе, т. е. от числа отказавших элементов а, значит, от дозы радиации. Изменяя дозу облучения, можно получить зависимости, из которых с помощью модели определяются моменты включения резервных элементов. Применительно к растительным объектам у нас разработана модель системы из нескольких типов резервов, включающих поочередно [2]. Для испытания систем резервирования перспективно использование известного метода фракционирования дозы облучения. При достаточно большом времени фракционирования, варьировании дозы облучения можно получать данные о системах резервирования и по математическим моделям оценивать их характеристики. Важной особенностью биологических систем является явная взаимозависимость систем восстановления и резервирования. Поэтому при испытании систем надежности биологических объектов необходимо применять сложные схемы испытания с несколькими факторами, которые позволяли бы оценивать характеристики различных систем восстановления, резервирования и их взаимодействия. Для создания таких схем испытания требуется широкое применение методов математического планирования экспериментов [13]. Такова, по нашему мнению, основные принципы методов испытания надежности биологических систем.

2.3.2. Экспериментальные исследования. Обоснование выбора объекта исследований. Биологические особенности объекта. Методы исследования

В задачу исследований входило обоснование и подтверждение основных принципов анализа надежности биологических систем. На основе методов испытания надежности биологических
объектов и применения их в конкретных исследованиях. Успех решения задачи исследования системы надежности растительного организма, во многом определяется выбором объекта исследований.

Для опытов необходим сравнительно простой биологический объект, представляющий собой многоуровневую иерархическую систему с достаточно простыми функциями. Простые функции удобны для четкого фиксирования отказов в функционировании объекта. В качестве такого простого объекта с многоуровневой иерархической структурой нами предложено использовать Спироделу многокореную — представитель семейства рясковых, высшее растение [2]. Особи Спироделы представляют собой зеленые щитки — филлокладии. В щитке имеется (см. рис. 2.4,2.5) генеративный орган — мерistema. Мерistema состоит из зачатков различного размера, что соответствует различным стадиям онтогенеза щитка. С правой и левой сторон меристемы имеются «карманы», из которых в соответствии с недихотомической родословной почередно появляются дочерние щитки. Родительский щиток правого клона в родословной обозначается «О», а дочерние щитки, выходящие из правого кармана — 1, 3, 5, 7, а выходящие из левого — 2, 4, 6, 8, 10. Важно отметить, что генерация дочерних щитков происходит последовательно. При этом, если зачатки первых дочерних щитков представлены в родительской меристеме тысячами клеток, то зачатки поздних 7—8 генераций представлены в родительской меристеме в виде зачатков из нескольких клеток. В связи с этим клетки зачатков первых дочерних генераций до момента формирования дочернего щитка способны осуществить 1—2 деления, а клетки поздних дочерних генераций — до 6—8 делений. Схематически данный объект как многоуровневую иерархическую систему можно представить в виде четырехуровневой системы (см. рис. 2.5).

В нашем рассмотрении в меристеме, нижним уровнем иерархии является уровень клетки. Клетки входят, как элементы в следующий уровень иерархии — субпопуляцию клеток зачатков различного размера. Субпопуляции клеток в свою очередь являются элементами и образуют следующий уровень иерархии — популяцию клеток меристемы (меристематическую ткань) Мерistema входит как элемент в организованный уровень иерархии. Данная многоуровневая система имеет четко выраженную генеративную функцию — закладку и формирование дочерних щитков. Таковы некоторые основные биологические особенности объекта [2].

В качестве основной схемы испытаний мы изобрали схему из трех факторов. В этой схеме в качестве основного фактора, индуцирующего пуассоновский (простейший) поток отказов в меристеме, применяется ионизирующая радиация -Д (γ-радиация 60Co) в различных дозах.

Схема основных опытов была следующей. Колонии щитков Спироделы культивировали на жидкой среде Хатнера [11] в ламинотермостате при температуре 26°С и освещенности 2 тыс. люкс. Из клона отбирали зрелые пары щитков и принимали их как родительские. Отобраные пары пересаживали на агаризованную среду в чашку Петри. Здесь по мере культивирования производили откладку и учет родословной в соответсвии с G недихотомической родословной [2] Отобраные пары родительских щитков (0—1 по родословной) в пробирках облучали γ-лучами и затем в процессе их культивирования на агаре, проводили учет и пересаживание в чашках Петри соответствующих дочерних щитков 1, 2, 3, ... 14 генераций. О степени поражения или восстановления судили по появлению дочерних щитков соответствующих генераций в родословной.

При постановке данных исследований мы в основном пользовались методами математического планирования эксперимента [17,18], что позволяло проводить многофакторные эксперименты при реальном числе вариантов и в результате построить статистическую модель исследуемого явления. В этой модели сделана попытка независимо оценить влияние каждого из факторов, определяющих радиоустойчивость субпопуляций клеток меристемы, выявить степень их взаимодействия. Для проведения активного эксперимента мы применяли различные типы планов (использовали двухуровневые полные факторные эксперименты, а также Ортогональный Центральный Композиционный План (ОЦКП) для трех факторов). Сейчас мы остановимся на последнем. В эксперименте по плану ОЦКП каждый из факторов варьировали, придавая им 5 дискретных значений. Фактор γ-облучения —Д использовали для индукции потока отказов (х) на следующих уровнях: 1,572 крад (15,72 Гр) (−a) — звездная точка плана; 2 крад (20 Гр)(−1); 4 крад (40 Гр) (0); 6 крад (60 Гр) (+1); 6,428 крад (64,28
Гр) (4-я) В скобках указаны преобразованные кодированные значения уровней факторов (а = 1,215). Выбор уровня доз был определен в предварительных экспериментах. Исходя из предположения, что изучение мощностных зависимостей радиационного эффекта дает возможность выявить быструю компоненту восстановления, в качестве второго фактора I использовали мощность дозы γ-облучения (х2). Уровни фактора: 1,42 р/сек (142 Гр/сек) (—а); 28 р/сек (0,28 Гр/сек)(—1); 150 р/сек (1,5 Гр/сек) (0); 272 р/сек (2,72 Гр/сек)(+1); 298 р/сек (2,58 Гр/сек)(+а). Для обнаружения медленных систем восстановления использовали третий фактор — фракционирование дозы облучения на две полуфакторы, с различным временем -Т, между облучениями . Уровни фактора: 0 ч (—а); 42 мин (—1); 4 ч (0); 7 ч 18 мин (+1); 8 ч (+а). План ОЦКП позволяет искать экспериментально-статистическую модель процесса в виде уравнения регрессии:

\[Y = B_0 + B_1x_1 + B_2x_2 + B_3x_3 + B_4x_4 + B_5x_5 + B_6x_6 + B_7x_7 + B_8x_8 + B_9x_9 + B_{10}x_{10} \]

где \(Y \) — исследуемая функция отклика, \(B_0 \) — константа плана, \(B_1 \) — коэффициент, \(B_2 \) — коэффициент уравнения регрессии, который независимым образом представляет влияние на \(Y \), \(B_3 \) — коэффициент процессов восстановления, зависящей от мощности дозы, \(B_4 \) неотражающий влияния на \(Y \), \(B_5 \) — коэффициент взаимодействия факторов мощности дозы и ее фракционирования, \(B_6 \) — коэффициент фактора мощности и фракционирования дозы на \(Y \) и так далее.

Процесс генерации дочерних щитков исследовался нами на протяжении 2,5 месяцев. Функции отклика определялись, как общее число генерированных дочерних щитков и число дочерних щитков в различных генерациях для трех различных сроков в 1; 2 и 2,5 месяца. Первый анализ результатов произвели через месяц после облучения, а второй через два месяца. Окончательный анализ был произведен через 2,5 месяца после полного завершения генеративного процесса.

В течение первого месяца наблюдения, регистрировались потоки пяти генераций. В генерации этих первых дочерних щитков, видимо, принимали основное участие клетки популяции, которые испытали наибольшее повреждение. За два месяца успели сформироваться щитки десяти генераций. На функции отклика во второй срок анализа сказано радиационное повреждение клеток зачатков дочерних щитков первых генераций и отдаленные последствия радиационного поражения клеток зачатков щитков более поздних генераций. На функции отклика, наблюдаемой через 2,5 месяца генеративного процесса, сказывается также влияние мал поврежденных клеток или вовсе неповрежденных клеток. Отметим, что функция отклика отражает сложный процесс реорганизации клеточных щитков меристемы родительского щитка, и в этой реорганизации интегрируются изменения в исходной меристеме, связанные с радиационной гибелью отдельных клеток, пострадавших во время восстановления повреждений и перераспределением воли клеток между оставшимися клетками.

2.3.3. Феноменологические и количественные характеристики радиационного поражения и восстановления меристемы у Спироделы многокоренной

В качестве исходной гипотезы при обсуждении полученных данных (см. рис.2.5) выдвигается следующая упрощенная модель функционирования популяции клеток меристем. Исходную родительскую меристему представляем, как большой пул клеток, распределенных по зачаткам, находящимся на разных стадиях онтогенеза, что связано с различным числом клеток в зачатке. При этом зачатки щитков шестой — восьмой генерации представлены в исходной родительской меристеме в день облучения несколькими клетками, а щитки более ранних генераций представлены тысячами клеток. При действии облучения на данную модель предлагается следующее: в исходной популяции клеток в соответствии с распределением Пуассона [3] появляется после облучения множество клеток, поврежденных в различной степени. Различная степень повреждения может привести к тому, что в популяции появляются клетки разнообразных форм инактивации (т.е. клетки с ограниченной способностью делиться). Степень повреждения меристемы проявляется в нарушении способности сформировать и обеспечить выход соответствующих дочерних щитков. Организация субпопуляции клеток подвергается измене-ниям за счет возникших при облучении повреждений, а также в результате поклеточного и репопуляционного восстановления.
Репопуляционное восстановление может происходить либо за счет пролиферации специальных резервных клеток, либо путем размножения неповрежденных, мало поврежденных и восстановившихся от повреждений клеток.

Изложенные представления, носимо, упрощены, в них отражена лишь та часть механизмов, которая может быть модифицирована используемыми в эксперименте факторами. Модель не рассматривает различий между генерируемыми дочерними щитками: все они считаются выжившими и способными к нормальной генерации потомков, чего реально может и не наблюдаться. Модель не учитывает специально старения клеток и меристемы, поэтому выживаемость в каждой генерации оценивается по отношению к соответствующему контролю. (Вопросы старения будут в дальнейшем детально рассмотрены).

Полученные экспериментальные данные обработаны и приведены к виду, удобному для анализа в рамках предлагаемой модели.

Результаты генеративного процесса после месяца генерации показали зависимость коэффициентов уравнений регрессии от номера генерации для первых пяти дочерних генераций. Величина коэффициента говорит о знаке и доле влияния данного фактора или их взаимодействия на дочерних щиток данной генерации. Как видно, способность меристемы отрицательно реагировать на воздействие y-радиации с номером генерации линейно возрастает. Эту зависимость можно аппроксимировать таким уравнением:

В1 (n) = - 0,25 (n - 1). С ростом номера генерации радиочувствительность зачатка щитка, отражаемая величиной коэффициента B1, возрастет на 25% на каждой генерации. Можно полагать, что потеря способности к делению во времени, измеряемом числом генераций, накапливается постепенно и линейно. Так, если на генерировании второго дочернего щитка в первую очередь скажется потеря способности к делению наиболее поврежденных клеток, то при генерировании следующих дочерних щитков скажется еще и вклад менее поврежденных клеток, которые позднее утрачивают способность к делению, т. е. другие формы инактивации клеток. Линейность этой зависимости может означать, что различные формы инактивации клеток равномерно распределены по популяции. Коэффициент B2 — показывает степень влияния на популяцию увеличения мощности дозы y-облучения, т. е. эффективности работы восстановительной системы, которую можно модифицировать изменением мощности дозы.

Зависимость B2 от -n также можно аппроксимировать линейной зависимостью В2 (n) = -0,1 (n - 1). Видно, что с ростом номера генерации способность щитка данной генерации к восстановлению возрастает на 10%, т. е. с ростом номера генерации вклад восстановленных клеток в возможность появления данного дочернего щитка линейно возрастает. Можно предполагать, что быстрое восстановление, реагирующее на изменение мощности дозы в изучаемых пределах, происходит в популяции равномерно и, вероятно, в одинаковой степени на клетках различных форм инактивации.

Изменение B3 с номером генерации отражает зависимость медленного восстановления, реагирующего на фракционирование дозы, от номера, генерируемого дочернего щитка. Зависимость В3 от -n, можно аппроксимировать такой линейной зависимостью:

B3 (n) = + 0,07 (n - 1). Видно, что с ростом номера генерации на 7% возрастает способность к медленному восстановлению, т. е. с ростом номера генерации вклад клеток, восстановленных по медленному механизму, линейно возрастает. Можно предполагать, что медленное восстановление, реагирующее на фракционирование дозы гамма-облучения, происходит в пределах популяции равномерно.

Следует также обратить внимание на те коэффициенты уравнения регрессии, которые показывают вклад в функцию отклика попарных взаимодействий различных факторов.

Величина коэффициента B12 определяет меру взаимодействия фактора радиочувствительности, и фактора, определяющего эффективность быстрого восстановления. Рассчитано, что во второй генерации B12 составляет 0,22, т. е. применение дозы облучения (+1) в крад(60 Гр) и высокой мощности дозы (+1) 272 р/сек (2,72 Гр /сек) приводит к снижению выхода щитков в данной генерации на 22%, т. е. щитки данной генерации при высоких дозах облучения обладают высокоэффективной быстрой системой восстановления. Радиочувствительность потомков этой ранней генерации существенно зависит от эффективности восстановления, точнее, от количества восстановленных клеток. В случае более поздних генераций (3, 4, 5) B12 составляет +10%. Здесь применение высокой дозы и мощности повышает выход потомков этих генераций за счет системы, связанной с
взаимодействием этих факторов, на 10%. Вероятно, высокая доза и мощность препятствуют восстановлению клеток и вкладу этих восстановленных клеток в формирование и генерирование щитков поздних генераций, что в итоге приводит к повышению эффективности их выхода. Вследствие того, что восстановленные клетки могут нести остаточное повреждение, их отсутствие при высоких дозах и мощности гамма-облучения повышает выход щитков. Коэффициент B_{13} в уравнении регрессии отражает влияние на функцию отклика взаимодействия фактора радиочувствительности и фактора медленного восстановления. Установлено, что для второй-третьей генерации B_{13} близко к 0. Это означает, что между радиочувствительностью и медленным восстановлением, на данном этапе генерации нет взаимодействия, т. е. оба процесса осуществляются независимо. Вероятно, медленное восстановление в этом случае не зависит от степени повреждения популяции клеток меристемы. На более поздних генерациях B_{13} становится значительным и отрицательным по величине (4—5 генерации). Видимо, в этот период увеличение дозы снижает эффект медленного восстановления, проявляющегося при фракционировании дозы.

Для коэффициента B_{23}, который в уравнении регрессии отражает взаимодействие процессов быстрого и медленного восстановления, наблюдается аналогичная картина. На появление потомков второй-третьей генерации взаимодействие этих факторов не оказывает существенного влияния, а на более поздних генерациях увеличение мощности дозы и времени фракционирования приводит к отрицательному эффекту. Можно думать, что высокая мощность дозы препятствует быстрому восстановлению клеток, и это сказывается отрицательно на потомках более поздних генераций, что объясняется меньшей степенью формирования резервных клеток, ответственных за медленное восстановление. Мы полагаем, что резервные клетки в онтогенезе могут быть рассеяны по меристеме или сформированы вследствие малого повреждения или быстрого восстановления и затем использованы в медленном восстановлении. Таковы феноменологические особенности функционирования популяции клеток меристемы, проявляющиеся в первом наблюдении (через один месяц), при рассмотрении процессов в рамках предлагаемой модели.

Результаты обработки данных после, двух месяцев генеративного процесса, показал аналогичные по сути закономерности. Данные первого и второго наблюдений обладают сходством и различиями, связанными, видимо, с тем, что во втором наблюдении в функцию отклика добавляется вклад более поздних, отдаленных от момента облучения генераций. Наблюдается нечто вроде “эффекта дорастания” В.И. Корогодина [19]. Мы остановимся только на различиях в результатах этих наблюдений. B_{13} ведет себя так же, только величина коэффициента в уравнении аппроксимации уменьшилась: $B_{13}(n)=-0.15 (n - 1)$. Снижение коэффициента с 0.25 до 0.15 связано с тем, что облучение в меньшей степени сказывается на поздних дочерних щитках различных генераций. Аналогичная картина снижения величины коэффициента наблюдается и для $B_{23} (n) = + 0.034 (n - 1)$. Коэффициент B_{23} ведет себя подобным образом, хотя внешний характер зависимости изменяется. Для потомков ранних генераций (2, 3, 4), видимо, вследствие заметного вклада в их генерацию клеток, восстановленных по быстрому механизму, приводит к тому, что одновременное применение высокой дозы и мощности даёт отрицательный B_{13}. Затем постепенно, а не резко, как в первом наблюдении, происходит увеличение коэффициента настолько, что в 6—9 генерациях он становится большим и положительным. Коэффициент B_{13} для ранних генераций составляет 10 %. Это может означать, что увеличение дозы гамма-облучения, т. е. опустошение пула делящихся клеток, приводит к более быстрому включению резервных клеток. На судьбе более поздних генераций это взаимодействие сказывается уже отрицательно, возможно, вследствие того, что пул резерва к шестой генерации уже опустошен и высокая доза облучения препятствует созданию нового резерва. Коэффициент B_{23} ведет себя аналогично. Взаимодействие высокой мощности и времени фракционирования, препятствующее, видимо, быстрому восстановлению, способствует проявлению медленного восстановления, т. е. включению резервных клеток на ранних генерациях. На более поздних генерациях, когда резерв клеток уже опустошен, решающей является высокая мощность дозы, препятствующая быстрому восстановлению, что снижает выход щитков в поздних генерациях за счет взаимодействия B_{23}.

В итоговом наблюдении, через 2, 5 месяца генеративного процесса, наблюдается следующая картина. Линейные уравнения
отодвигается на все более поздние генерации. Аналогичная картина и с взаимодействием -B12. Все это говорит о том, что с развитием и с удалением генеративного процесса от момента облучения, воздействие факторов, действовавших в момент облучения (доза, мощность, время фракционирования), заметно снижается и сказывается только на самых поздних этапах генеративного процесса.

Предложенная модель функционирования популяции клеток меристемы Спироеды многокоренной удачно описывает полученные экспериментальные данные, на основании которых можно сделать выводы о радиобиологических особенностях исследуемой популяции клеток.

I. По критерию генеративной способности популяции клеток меристемы, спироеда многокоренная накапливает радиационные повреждения линейно, постепенно, в процессе генерации. По-видимому, в популяции клеток различные формы инактивации распределены равномерно, что сказывается на радиочувствительности в зависимости от числа клеток, затрагиваемых ими.

II. Популяция клеток меристемы обладает, по крайней мере, двумя независимыми системами восстановления. Быстрая система восстановления, модифицируемая изменением мощности γ-облучения, требует для своего завершения до 30 мин. Медленная система восстановления зависит от времени фракционирования дозы, которая определяется, как минимум, восьмью часами.

III. Быстрая система восстановления с ростом номера генерации линейно увеличивает свою эффективность в одинаковой степени на клетках, несущих различные формы инактивации. Возможно, здесь действует независимый тип поклеточного восстановления [16]. Быстрая система восстановления затрагивает от 10 до 6% клеток в меристеме щитка.

IV. Медленная система восстановления с ростом номера генерации линейно увеличивает свою эффективность, но в меньшей степени, по крайней мере, в два раза, чем быстрая система. В рамках предлагаемой модели это может означать, что пул резервных клеток, с которым связано медленное восстановление в щитке каждой генерации, составляет 1—7 %. Вероятно, резервные клетки распределены равномерно по популяции.

V. Со временем в процессе генерации, по мере удаления системы от момента воздействия внешних факторов (доза,
мощность, время фракционирования), их влияние в конце функционирования минимизируется, Система популяции клеток меристемы сводит к минимуму воздействие внешних факторов.

2.4. Особенности процесса старения у Спироделы многокоренной
Старение многоклеточных систем — фундаментальный процесс, который существенно отличается от процессов старения одноклеточных систем. В качестве модели для исследования механизмов старения избрана популяция клеток меристемы Спироделы многокоренной (См.) — высшего растения из семейства рясковых [2]. Экспериментальные данные (см. рис. 2.11.) показывают, что характер процесса старения в меристеме Спироделы многокоренной в норме и после гамма-облучения в различных дозах (10—80 Гр) имеет сходный характер. Кривые старения подобного типа описываются формулой Гомперта [8] (см. формулу 2.9.).

Данную формулу можно интерпретировать исходя из модели старения Спироделы [8], основной на предположении о накоплении ошибок в процессе старения биосистемы. При этом N_0 оценивается из начальных условий и равно исходному числу организмов, взятых для исследования. N — число организмов, генерирующих потомки — дочерние щитки в различных дочерних генерациях (m — номер генерации дочернего щитка), B — скорость процесса старения в системе, R — скорость мутирования, накопления ошибок в популяции клеток, приводящая к увеличению темпов старения. Данное исследование посвящено изучению механизмов, определяющих значение параметров кривой старения (см. рис 2.11) в меристеме Спироделы многокоренной в норме и при облучении. Произведя несложное преобразование формулы (см. 2.9), получим следующее выражение, представленное в формуле (см. 2.11.)

На основе этого можно предложить метод оценки основных параметров кривой старения. Получены экспериментальные данные в виде, удобном для использования выражения (см 2.11). По наклону кривых на линейном участке можно оценить значение параметра R, а проведя экстраполяцию линейного участка к значению $m = 0$, на ординате можно получить значение параметра B, а по нему оценить значение $- B$. Известно, что основная функция меристемы С. м. — генеративная способность — состоит в последовательном формировании зачатков и генерации дочерних щитков. Родительская мерistema щитка способна генерировать до 12—14 дочерних щитков. Зачатки первых дочерних генераций исчисляются несколькими тысячами клеток, а последних — несколькими клетками. Поэтому клетки первых зачатков осуществляют одно-двадея деления до формирования зрелого зачатка, а клетки последних генераций осуществляют большое число делений. Оценки параметров показали, что для нормы $-B = 0,04, R = 0,08, B = 0,08, R = 0,37$. Полученные оценки параметров показывают, что процессы старения в норме и при облучении существенно не различаются. При этом скорость старения $- B$ несколько выше у облученного варианта. Заметно, что темпы старения существенно возрастут с ростом номера генерации m. Учитывая, что с ростом номера генерации процесс старения меристемы все более зависит от процессов старения в малых субпопуляциях клеток, которым требуется осуществить большее число делений до формирования и выхода зрелого щитка. Таким образом, наклон прямой может служить тестом, определяющим различие в темпах старения в больших и малых субпопуляциях клеток в меристеме См. (см. рис. 2.11). Эти данные служат основой для использования параметров B и R, как тест для характеристики процесса старения в многоклеточных системах, в частности в меристеме См.

В многоклеточных динамических системах процесс старения реализуются на уровне популяции клеток через длительное время. Мы оценивали динамику процесса старения на различных промежутках времени. На 20-й день генеративного процесса наблюдался процесс старения, связанный с первыми дочерними генерациями, которые в момент начала эксперимента были представлены зачатками крупного размера. В последующих наблюдениях (30, 60, 100 дней) процессы старения проявляются на фоне заключительных дочерних генераций, которые были представлены в момент начала эксперимента зачатками меньших и совсем малых размеров в виде одиночных клеток.

2.5. Исследование и моделирование радиоемкости экосистем
Нами предложен новый подход к оценке состояния биоты экосистемы - по поведению параметра радиоемкости. Напомним, что радиоемкость определяется, как предельное количество
вещества, в частности калий, который участвует во всех физиологических реакциях. Поэтому динамика поглощения растениями искусственно введенного в биоту трассера 137Cs, который является аналогом макроэлемента питания - калия, может отображать благополучие биоты экосистемы.

После Чернобыльской аварии такой трассер является неизбежным спутником в жизни биологических объектов практически всех экосистем Украины. Исследования показали, что распределение и перераспределение данного трассера в водных и наземных экосистемах четко реагирует на все существенные внешние влияния (климат, паводки, контаминаны и т.п.), а также на разные типы загрязнителей (температурные сбросы, дозы облучения, химические поллютанты и т.п.) [20,21]. При этом было видно, что ни одно существенное влияние на экосистему не может отразиться на распределении трассера и на параметрах радиоемкости по нему. Такой подход, развиваемый в наших исследованиях, позволит, по нашему мнению, применить параметры радиоемкости для эквидозиметрической унифицированной оценки функциональной радиоемкости экосистем.

2.5.1. Введение

Для характеристики состояния и действия разных факторов на биоту в экосистемах используют до 30 различных показателей. Среди них основные - биоразнообразие, биомасса, численность и строение размножения [20,21]. Известно, что такие показатели реагируют на негативные факторы среды с большим опозданием, когда состояние биоты в экосистеме необратимо ухудшается. Существует необходимость найти такой показатель и меру благополучия биоты, который бы опережал по своим ответам реакцию биологических ростовых показателей и позволял бы оперативно оценивать состояние биоты. Исследования поведения радионуклидного трассера 137Cs и параметров радиоемкости по этому трассеру позволили предложить проведение оценки состояния биоты в экосистеме по реакции и изменениям показателей радиоемкости [20]. Опыты проводились на водных культурах растений – максимально упрощенных моделях растительных экосистем. Известно, что состояние биоты в экосистеме может быть охарактеризовано через ее способность поглощать питательные
повреждать ее основных функций: рост и сохранение биомассы биоты в экосистеме и кондиционирование среды обитания.

Понятие радиоемкости, а точнее о факторе радиоемкости, было впервые введено Аге и Корогодиным [5]. Фактор радиоемкости был определен, как доля радионуклидов от общего количества, попавших в экосистему, которая удерживается в каждом из компонентов экосистемы (косых и биотических). Понятие радиоемкости было нами расширено и было введено несколько дополнительных определений [20, 21].

Радиоемкость - фундаментальное свойство экосистем, определяющее то предельное количество радионуклидов (Ки или Бк), которое может стабильно удерживать биота экосистемы, без повреждения (изменения) своих основных функций (рост, прирост биомассы биоты и кондиционирование среды обитания).

Фактор радиоемкости определяет долго радионуклидов, удерживаемых в биотических и абиотических компонентах экосистемы. На примере озерной экосистемы можно отметить, что свое значение фактора радиоемкости имеет каждый компонент экосистемы: вода, донные отложения, биота водоема. Была построена модель и выведена следующая формула для расчетов фактора радиоемкости водоемов [19]:

\[F = \frac{k h}{H + kh}, \]
(2.22)

где \(k \) - коэффициент накопления, "вода - донные отложения"; \(h \) - толщина сорбирующего слоя в иле; \(H \) - средняя глубина водоема, а \(F \) показывает, какая часть радионуклидов, содержащаяся в водоеме, приходится на долю донных отложений \(F \), а какая - на воду \((1 - F) \). Величину \(F \) назвали "фактором радиоемкости" водоема. Этот фактор не зависит от концентрации радионуклидов в воде \(C \) на большом интервале значений и позволяет рассчитывать степень загрязнения воды водоема, если известно количество поступивших в него радионуклидов и площадь его поверхности.

Фактор радиоемкости биотической составляющей водоема можно оценить по формуле

\[F_0 = \frac{PKH}{H + kh + PKH}, \]
(2.23)

где \(P \) - плотность биомассы в единице объема; \(K \) - коэффициент накопления "вода – биота".

Если, для примера, рассчитать \(-F_0\) для реальной ситуации, когда \(-P\) составляет \(10 \text{ г/м}^3\), средний коэффициент накопления \(K = 10^4 \), средняя глубина водоема \(H = 6 \text{ м} \), \(h = 0,1 \text{ м} \), \(k = 800 \), то мы получим значение радиоемкости \(F_0\) близкое к 0,9, когда практически все поступившие в водоем радионуклиды попадают в биомассу биоты [20]. При отмирании биоты или десорбции радионуклидов-трассеров они переходят в воду и донные отложения.

Если экосистема состоит из двух камер - биота и вода, то формула радиоемкости для биоты и воды упростится:

\[F_0 = \frac{PK}{1+PK}, \quad F_0 = \frac{1}{1+PK}, \]
(2.24)

(Отсюда легко выводится формула для показателя синергизма \(-Z=PK\).)

Рассмотрим каскад из нескольких водоемов, каждый из которых характеризуется своими параметрами \(k_1, k_2, k_3, \ldots \)

\(H_1, H_2, H_3, \ldots \)

\(S_1, S_2, S_3, \ldots \)

\(p_1, p_2, p_3, \ldots \)

\(K_1, K_2, K_3, \ldots \)

Предположим наиболее простой случай равного объема всех водоемов и медленного притока воды, достаточного для установления равновесия между водой, биотой и донными отложениями. Тогда для каждого из водоемов можно по формуле (2.22) и (2.23) оценить значение радиоемкости \(F_1, F_2, F_3 \) этих водоемов. Можно вывести формулу общей радиоемкости всего каскада из \(-n\) водоемов:

\[F_n = 1 - \prod_{i=1}^{n} (1 - F_i). \]
(2.25)

Анализ этой формулы показывает, что чем больше число водоемов задействовано в каскаде, тем выше его радиоемкость. Общая радиоемкость каскада всегда выше, чем радиоемкость самого лучшего из входящих в него водоемов.

Нами разработаны и построены модели для оценки параметров радиоемкости разных типов экосистем – наземных, водных, лесных, горных, луговых и городских экосистем [22]. Полагаем, что такой единий подход к моделированию радиоемкости разного типа экосистем позволяет универсальным образом описывать самые разные экосистемы, а значит, и сравнивать их по этим показателям.
2.5.3. Параметр радиоемкости, как опережающий показатель состояния биоты экосистем

2.5.3.1. Теоретический анализ предлагаемого подхода

Рассмотрим проблему радиоемкости на примере двухкамерной модели экосистемы, которая включает среду (воду) и биоту. Возьмем за основу, ранее описанную, двухкамерную модель окружающей среды (ОС) – камеру ОС (вода, почва и т.д.) и камеру биоты (наземные и водные растения, лес и т.д.

Итак, имеем две камеры (см рис. 2.15), содержащие \(Y(x) \) и \(Z(x) \) радиоактивных радионуклидов, (время \(-x\)):

- \(a_{12} \) - скорость поглощения радионуклидов трассеров (и пропорционально этому скорости поглощения питательных веществ, например, калия) и \(a_{21} \) - скорость их оттока в среду (в воду).

Предположим, что исходный запас радиоактивных радионуклидов в камере \(Y(x) \) составляет \(Y_0 \) Бк \((\text{137Cs})\). Решение системы двух дифференциальных уравнений для данной камерной модели дает (см. формулу 1.11.).

При больших временах наблюдения по уравнениям (2.30) можно оценить факторы радиоемкости для воды и биоты следующим образом (см.формулу 1.12.).

Сравнивая уравнения (2.22), (2.23) и (2.24) можно еще раз показать, \(a_{12} = PK = \frac{F_a}{F_a} = \frac{1 - F_a}{F_a} \). (2.26)

Таким образом, можно полагать, что соотношение скоростей поглощения и оттока трассеров и элемента минерального питания калия пропорционально биомассе биоты и коэффициенту накопления в системе "вода - биота" (оно же означает и коэффициент синергизма). Это означает, что чем выше биомасса и коэффициент накопления трассера биоты, тем лучше состояние биоты и тем выше соотношение скоростей поглощения и оттока трассера, а значит, и питательных элементов из воды в биомассу биоты. Здесь отчетливо видна четкая связь показателей радиоемкости по трассеру и биологических показателей - скоростей поглощения и оттока трассеров и питательных элементов. Достаточно, чтобы под влиянием стресс-факторов (радиация, тяжелые металлы и др.) произошло уменьшение \(K \) - коэффициента накопления (вода - биота), чтобы при этом изменились параметры радиоемкости. Если при этом под влиянием поллютантов уменьшаются и биологические показатели - биомасса, скорость роста биомассы, - то последует еще большее изменение показателей и параметров радиоемкости.

Проанализируем поведение параметров радиоемкости по трассеру во времени. Для оценки состояния биоты экосистемы можно тестировать, как фактор радиоемкости биоты \(-F_a\), так и фактор радиоемкости воды \(-F_a\). (2.27). Удобнее тестировать экосистему по изменениям фактора радиоемкости воды \(-F_a\), который просто определять по остаточной радиоактивности трассера в водной среде. Продифференцируем формулу (2.26) как

\[
\frac{dF_a}{dt} = \frac{P \frac{dK}{dt}}{K} + \frac{K \frac{dP}{dt}}{(1 + PK)^2}.
\] (2.27)

Видно, что если под действием радиации и/или других факторов воды (например, тяжелых металлов) в экосистеме будет происходить существенные эффекты, то они, прежде всего, выразятся в изменениях \(-F_a\) и \(-K\), что автоматически скажется на изменении \(-F_a\) и, особенно, на поведении ее производной. Таким образом, у нас есть четыре предпосылки предлагать исследование изменения \(-F_a\) (фактора радиоемкости воды в экосистеме), как опережающего показателя состояния и реакции биоты экосистемы на действие различных факторов.

2.5.3.2. Экспериментальная проверка возможности использования фактора радиоемкости, как опережающего параметра для оценки реакции биоты на действие различных поллютантов

С целью изучить возможность использования показателя радиоемкости растительной экосистемы в качестве характеристики ее состояния, а также для прогнозирования изменений его под влиянием внешних воздействий было спланировано и поставлено серию экспериментов. В качестве объекта исследований было выбрано упрощенную модель растительной экологической системы - водную культуру растений кукурузы. Трехдневные проростки растений кукурузы (прорашивали в термостате при температуре 23 °C) облучались на кобальтовой \(\gamma\)-установке "Исследователь" в дозе 15 Гр,
после чего высаживались на 0,5-литровые банки с водой, которая служила им питательной средой. В воду всех опытных вариантов был внесен трассер - радиоактивный 137Cs. В определенные варианты добавлялся раствор соли CdCl$_2$. Параллельно высаживался на воду с трассером и контрольный вариант, необлученные растения которого не подвергались влиянию CdCl$_2$. В ходе эксперимента (в течение 14 дней) регулярно проводился отбор проб воды для определения остаточной активности по содержанию трассера в ней. Параллельно измерялась длина главного корня проростков.

В результате были получены временные зависимости для показателей радиоемкости модельной системы и для характеристик ростовых процессов.

Результаты исследования, представленные на рис. 2.22 и 2.23, показывают, что однократное остroe γ-облучение проростков кукурузы в дозе 15 Гр и внесение в среду обитания/питания слаботоксичной концентрации соли кадмия (50 мкМ/л), оказывают угнетающее действие на динамику роста корней растений. Видно, что ростовые характеристики растений, подвергавшихся влиянию соли кадмия, ниже, чем для контроля приблизительно на 40 %.

Рис. 2.22. Влияние однократного остrego-γ-облучения проростков кукурузы в дозе 15 Гр и внесения CdCl$_2$: в концентрации 50 мкмоль/л на динамику роста корней водной культуры: 1 – контроль; 2 – облучение в дозе 15 Гр; 3 – внесение 50 мкМ/л соли кадмия.

Следовательно, нужно ожидать и ухудшения характеристики поглотительной способности растений – показателя радиоемкости по трассеру. Динамика фактора радиоемкости воды как компонента предложенной упрощенной системы показала, что растения контрольного варианта к концу опыта поглощают почти все количество внесенного в воду радионуклида-трассера: и кривая, характеризующая процентное содержание 137Cs в воде, на 5-й день приближается к нулю. Растения опытных вариантов поглощают до 55 % активности, внесенной в среду.
2.5.4. Заключение по данному подразделу

В экспериментальных и теоретических исследованиях показано, что показатель радиоемкости модельной экосистемы по радионуклидному трассеру 137Cs адекватно реагирует на изменение состояния биоты. В экспериментах на максимально упрощенной модели растительной экосистемы при действии радиации и тяжелых металлов наблюдается заметное уменьшение показателей радиоемкости биоты. Этот феномен означает изменение состояния и благополучия биоты, которое отражается в перераспределении трассера как тест-показателя.

Установлено, что радиационные и химические факторы (тяжелые металлы) влияют на скорость роста и состояние биоты, и это влияние адекватно отображается на значениях факторов радиоемкости. Перераспределение трассера в экосистеме четко отображает внутренние законы состояния и поведения биоты в различных типах экосистем.

Разработана математическая модель для оценки синергизма действия нескольких вредных факторов через использование показателей радиоемкости экосистемы по трассеру. Показано, что в динамике роста и восстановления биоты происходит существенное изменение показателя синергизма, включая явления аддитивности и антагонизма разных факторов.

Установлено, что процессы восстановления биоты экосистем после радиационных и химических воздействий отчетливо проявляются как в изменении биологических ростовых показателей, так и в улучшении показателей радиоемкости. Это означает, что меры по реабилитации биоты экосистем способны повысить показатели ее радиоемкости.

Показано, что показатель радиоемкости по трассеру 137Cs может быть использован в оценках состояния биоты при антропогенных нагрузках на экосистемы.

2.6. Моделирование и оценка экологической емкости и надежности избранных экосистем в зоне влияния опасных производств ядерного цикла

Нами были проведены расчеты радиационной емкости и экологической емкости, которые учитывают как сценарии штатных выбросов опасных предприятий и предприятий ядерного
энергетического цикла, так и возможные аварийные ситуации. На практике удобно использовать как параметр - фактор радиоемкости и экологической емкости. Этот фактор рассчитывается путем использования известного метода на базе камерных моделей. Фактор экологической емкости и радиоемкости конкретного элемента ландшафта (Fj) или экосистемы определяется следующим образом:

\[
F_j = \frac{\sum a_{ij}}{\sum a_{ij} + \sum a_{ji}}
\]

где \(\sum a_{ij}\) - сумма скоростей перехода поллютантов из разных составляющих экосистемы в конкретный элемент ландшафта, или экосистемы, согласно камерных моделей, а \(\sum a_{ji}\) - сумма скоростей оттока поллютантов из исследуемой камеры - J - в другие составляющие компоненты экосистемы, сопряженные с ними. Количественные расчеты были нами дальше использованы для создания карт радиоемкости и экологической емкости территории Украины в зоне влияния выбранных опасных для окружающей среды возле предприятий.

2.6.1. Применение метода оценки экологической емкости и радиоемкости к анализу ситуации на Восточном горнообогатительном комбинате (ВостГОК) [23]

Применяя, выше упомянутые ГИС технологии, нами были построены картосхемы экологической емкости (надежности) и экологической опасности ветрового переноса поллютантов от ВостГОК. Это в первую очередь ветровой перенос от хвостохранилищ вблизи самого комбината, в частности идет речь о хвостохранилище «Щербаковское» (рис. 2.26.). Поэтому можно считать необходимым проводить контрмеры по пылеподавлению именно на хвостохранилище «Щербаковское».

Основные характеристики территории «Вост ГОК». На территории Украины добыча и переработка урановых руд осуществляют Государственное предприятие «Восточный горнообогатительный комбинат » (ПГ «Вост ГОК»).

Для ОС и населения основную опасность составляют большие по объёмам и активности хвостохранилища, которые содержат отходы переработки урановых руд, общее количество которых составляет около 66 млн.тонн и имеет суммарную активность около 4,4 \(10^{15}\) Бк (120000 Ки)

ПГ «Вост ГОК» имеет лицензию АЯР (администрации ядерного регулирования) на проведение деятельности по переработке урановых руд. Это включает переработку урановых руд на Гидрометаллургическом заводе (г. Желтые воды), переработку урановых руд кунного (на Смолинской шахте) и блокового (на Ингульской шахте) выщелачивания, эксплуатацию хвостохранилища «Щербаковское», проведения рекультивации и иных работ на хвостохранилище «КБЗ», проведение мониторинга на рекультивированных участках подземного выщелачивания «Девладовое» и «Братское».

Источниками загрязнения ОС на Желтоводской промплощадке являются пылегазовые вентиляционные выбросы, радиоактивные хвосты, пыление отвалов радиоактивных пород, выделения радона из хвостов и отвалов.

Хвостохранилище «Щ» расположено в 1,5 км к югу от г.Желтые воды в пределах балки «Щ» (Щербаковская) в виде двух секций –Старая и Новая. Старая имеет площадь 98,4 га, Новая – 265 га. Количество отходов 37 млн т. с активностью 48400 Кн. Пляжи данного хвостохранилища являются источниками радиоактивного загрязнения воздушной среды. Мощность дозы гамма-облучения в пределах санитарно-защитной зоны изменяется от 22 - 40 мкР/ч, на дамбе -41-75 мкР/ч, в чаще водохранилища – 142-175 мкР/ч. Из хвостохранилища КБЖ и Щ выделяется радон, который в результате диффузии и переноса ветром дает дополнительное облучение населения м.Желтые Воды и составляет от 60 Бк/м² до 10 Бк/м², которые уменьшаются с расстоянием от источника. Персонал ГП «ВостГОК», занятый на работах по добыче и переработке урановой руды, подвергается одновременному влиянию нескольких радиационно-опасных факторов (радона, дочерних продуктов его распада, рудной пыли, которые содержат долго существующие природные радионуклиды). Результатами многолетних анализов состояния радиационной безопасности на ГП «Вост ГОК» значения годовых эффективных доз облучения персонала находятся в пределах основного дозового предела облучения персонала на ядерных производствах - 20 мЗв/год, установленного законом Украины «О защите человека от влияния ионизирующего облучения».

Отдельную проблему составляет теоретически возможное серьезное влияние на ОС в зоне хвостохранилищ ГП «Вост ГОК». Если в результате пылевой бури хотя бы 1-3 % запаса радионуклидов будет перенесено приземными потоками воздуха на расстояние 10-20 км, тогда поверхностное загрязнение почвы в зоне влияния такого атмосферного явления, может по предварительным оценкам составить около 1–3 кКн на площади приблизительно в 500 км². Тогда плотность радионуклидного загрязнения ландшафта составляет около 2–4 Кн/км². Оценки дозовых нагрузок для людей в зоне таких выпадений может составить 1-5 мЗв/год, при действующем нормативе на допустимый уровень 1 мЗв/год при природном фоне облучения. Влияние таких выпадений на биоту в зоне осаждения в наземных экосистем может составить до 0,1 Гр/год, а для биоты водных экосистем до 0,5 Гр/год. Таким образом происходит влияние возможных переносов радионуклидов с пляжей и поверхностных зон хвостохранилища, протечек с пульпопроводов, которые имеют место на ГП «Вост ГОК». Картина подобной аварии с ветровым переносом радионуклидов от ВостГОKa представлена на фото 2.29, изоляциями представлена картина распространения с ветром пылевых радионуклидных загрязнений.

Поэтому применение средств пылеподавления на хвостохранилище ГП «Вост ГОК» необходимо для того, чтобы минимизировать экологический вред от возможных пылепереносов пылелотрат. Фактор экологической емкости (надежности) хвостохранилища ГП «Вост ГОК» оценивается величиной в 0,3-0,4. Поэтому целесообразно использование покрытия дерниной для сухой части хвостохранилища. Это позволит поднять уровень фактора радиоемкости (надежности) для задернованных участков до значений 0,7-0,8. Для этих частей хвостохранилища, которое может затапливаться во время заполнения хвостохранилища пульвой с ГП «Вост ГОК», или во время интенсивных дождей и весеннего таяния снега, можно использовать другой разработанный нами способ. Это в первую очередь покрытие таких затапливаемых участков камышово-тростниковыми матами. Для надежности их желательно закрепить на планках со специальными подвижными петлями. Как показали наши опыты на НГЗ (Николаевском глиноземном заводе), при затоплении такие камышово-тростниковыми матами всплывают, а при снеге воды, снова опускаются на свое место расположения. Этот путь является оптимальным для любого хвостохранилища. Согласно картосхемы видно направление наиболее вероятного загрязнения по предыдущие годы пылепереноса на экосистемы ОС. Крайне необходимо проверить на зоне влияния ГП «Вост ГОК» на ОС, мониторинг возможного загрязнения. Если этот уровень загрязнения превышает 0,1 Кн/км².
тогда на таких участках необходимо провести дезактивационные работы. В частности можно рекомендовать для задернованных участков, использовать метод снятия дернины (например с помощью машины Tuf cutter), который по нашим экспериментальным данным по дезактивации радионуклидзагрязненного полигона около с. Буряковка в 30-км зоне ЧАЭС, реально дает коэффициент дезактивации - Кд в 20 единиц (следует указать, что Кд – это отношение уровня загрязнения до применения средства дезактивации, к тому уровню загрязнения, который остается после дезактивации). Для открытой поверхности, где нет дернины, можно использовать способ рекультивации путем создания травяного газона (это третий способ, который мы использовали для пылеподавления на НГЗ).

2.6.2. Построение и анализ картосхем экологической емкости (надежности) территории и влияния на окружающую среду в зоне расположения действующих АЭС (Южно-Украинская, Хмельницкая, Зaporожская)

С помощью ГИС технологии нами были установлены критические места возможного депонирования выбросов и сбросов и предложены возможные контрмеры по снижению влияния на ОС.

На рис. 2.30-2.32. показаны картосхемы влияния указанных АЭС на ОС. Приведем важные характеристики экологического влияния указанных АЭС.

Южно-Украинская АЭС.

На ЮО АЭС эксплуатируются 3 энергоблока. Согласно требований НРБУ-97 противорадиационной защиты населения оценка влияния радиационно-ядерных опасных объектов, к которым принадлежат АЭС, осуществляется путем регламентации и контроля газоаэрозольных выбросов и жидкостных сбросов радионуклидов. На выполнение этих требований на ЮО АЭС установлены допустимые и контрольные уровни газоаэрозольных выбросов и жидкостных сбросов радионуклидов. На период работы ЮО АЭС зарегистрирован практически один случай превышения контрольного уровня выбросов радиоиода из вентиляционных труб ЮО АЭС (1,9 10^8 кБк/сут, допустимый 7,4 10^5 кБк /сут). За 3 года эксплуатации уровни выбросов радиоиода составили от 0,1 до 8,5x10^6 кБк/в сут.

По ИРГ (инертные радиоактивные газы) выброс составил 2,9 10^{10} Бк/ (МВт(эл) год. Нормированный выброс йода-131 составил 1,6 x10^4 Бк/ (МВт(эл) год. Нормированный выброс других аэрозолей составил 8,9x10^7 Бк/ (МВт(эл) год. Максимальная величина в сбросе составил тритий 3,1x10^9 Бк/ (МВт(эл) год. Сброс без трития составил 8,3 10^9 Бк/ (МВт(эл) год. Характерные величины активности отдельных радионуклидов в сбросываемых водах 0-1 Бк/л. Середненемесечный объем воды составляет 4300тыс.м^3. Середнесуточная суммарная бета активность атмосферных выпадений составляет около 2 Бк/м^2. Максимальные концентрации цезия -137, стронция -90 и трития в Ташлыкском водохранилище возле ЮУ АЭС, составляет 0,8x10^7, 0,05 и 230 Бк/л соответственно. На 500 м ниже сброса Ташлыкского водохранилища уровень содержания данных радионуклидов составляют 0,4x10^2 , 0,02 и 80 Бк/л соответственно. В р. Арбузинка объемная активность трития составляла 500 Бк/л. Выбросы долгоживущих радионуклидов (ДЖН) из вентиляционных труб ЮУ АЭС, составил от 100 до 1000 кБк/сутки (контрольный уровень для ДЖН установлен на уровне 2,7x10^4 кБк/сутки, допустимый уровень – 3,3x10^5 кБк/сутки. Практически до сих пор превышений выбросов ДЖН на ЮУ АЭС не происходило. По официальным данным концентрации радионуклидов в воздухе приземного слоя атмосферы, в подземных и поверхностных водах в районе размещен ЮУ АЭС не превышали допустимых уровней, регламентированных НРБУ-97.

Эта картина не включает таких явлений, как локальное заметное выпадение радионуклидов на прилегающие экосистемы. В соответствии с картосхемой, это могут быть места по розе ветров (см. рис 2.27). Эта в первую очередь г. Южноукраинск на юг от ЮУ АЭС. Проблемы загрязнения касаются также НП около ЮУ АЭС: с. Бузкое, с. Алексеевка, с. Новоселовка и с. Агрономия. Следует выполнить и разработать детальный мониторинг для выявления возможных опасных мест выпадений радионуклидов до уровня 0,1 Кк/км² и выше. Выявив такие участки концентрирования выбросов радионуклидов на окружающих элементах ландшафтах, следует разработать для них средства рекультивации, ремедиации и дезактивации. Наши опыты на полигонах НГЗ позволяют нам предложить следующие наиболее оптимальные средства:

1. На задернованных участках для дезактивации можно предложить аэробированный нами метод снятия дернины (Кд) (коэффициент дезактивации) = 20 единиц). Открытые вследствие дезактива-
покрытием камышово-тростниковых матов, что также позволит увеличить влажность под покрытием камышово-тростниковых матов. Желательно под покровом камышово-тростниковых матов проводить подсев трав, которые способны рекультивировать такие участки в условиях песчаной почвы и дефицита влаги. Это может позволить установить значения экологической емкости до 0,3 единиц с последующим увеличением этого значения в процессе рекультивации.

Считаем, что полученные нами данные по применению предложенных тут методов, испытанных нами на полигона НГЗ, позволяет нам предложить такую же стратегию и для ОС в зоне влияния других АЭС.

Хмельницкая АЭС (ХаАЭС).

На ХаАЭС работает 2 энергоблока. Согласно требований НРБУ-97 противирадиационной защиты населения от влияния радиационно-ядерных опасных объектов, к которым принадлежит ХаАЭС, осуществляется путем регламентации и контроля газоаэрозольных выбросов и жидкостных сбросов радионуклидов. Для выполнения этих требований на ЮУ АЭС установлены допустимые и контрольные уровни газоаэрозольных выбросов и жидкостных сбросов радионуклидов. За период работы ХаАЭС не зарегистрировано превышения контрольного уровня выбросов радиоиода из вентиляционных труб ХаАЭС (4,4·10⁴ кБк/сутки, допустимый уровень составляет 106 кБк/сутки). За годы эксплуатации уровня выбросов радиоиода составили от 0,1 до 2,3·10⁴ кБк/сутки.

По ИРГ выброс составил 5,5·10¹⁰ Бк/ (МВт(эл)) год. Нормированный выброс йода -131 составляет 3,8·10⁷ Бк/ (МВт(эл)) год. Нормированный выброс долгоживущих радионуклидов составляет 8,9·10⁹ Бк/ (МВт(эл)) год. Максимальная величина в сбросе составляет по стронцию-90 3,1·10⁸ Бк/ (МВт(эл)) год. Сброс без стронция составляет 8,9·10⁹ Бк/ (МВт(эл)) год. Характерные величины активности отдельных радионуклидов в сбросных водах 0-1 Бк/л. Среднемесячный объем сбрасываемой воды составляет 4300 тыс.м³. Среднесуточная суммарная бета активность атмосферных выпадений составляет около 2хБк/м². Максимальные концентрации цезия-137, стронция-90 и стронция в р. Горынь равняются 0,03, 0,02 и 6,6 Бк/л соответственно. В пруду –охладителе эти уровни составляют 0,05, 0,025 и 45 Бк/л соответственно.
Выбросы долгоживущих радионуклидов (ДЖН) из вентиляционных труб ХАЭС, составил от 100 до 300 кБк/сутки (контрольный уровень ДЖН установлена на уровне 2,8·10^3 кБк/сутки, допустимый — 6,4·10^4 кБк/сутки. Практически до сих пор превышений выбросов ДЖН на ХАЭС не происходило. По официальным данным концентрации радионуклидов в воздухе приземного слоя атмосферы, подземных и поверхностных водах в районе размещения ХАЭС не превышали допустимых контрольных уровней и уровней, регламентированных НРБУ-97.

Это не включает таких явлений как локальное заметное выпадение радионуклидов на прилегающие экосистемы. По картосхеме, это могут быть места по розе ветров (рис 2.28). Возможен существенный перенос загрязнителей в направлении г. Острог и меньший риск оценивается для населения города энергетиков г. Нетешин.

Следует выполнить детальный мониторинг для выявления возможных опасных мест выпадений радионуклидов до уровня 0,1 Ки/км² и выше. Вывих такие участки концентрирования выбросов радионуклидов на окружающих элементах ландшафтов, следует разработать для них способы рекультивации, ремедиации и дезактивации. Наши опыты на полигонах НГЗ позволяют нам предложить следующие наиболее оптимальные способы [23]:

1. На зарезервированных участках для дезактивации можно предложить апробированный нами метод снятия дернины (Кл=20 единич.). Открытые вследствие дезактивации участки, предлагается закрепить для подавления пылеобразования наиболее оптимальным, апробированным нами методом и провести рекультивацию с подсевом трав на открытые поверхности, этим методом удается увеличить фактор экологической емкости и радиоемкости (надежность) до значений в 0,3-0,5 единиц и с увеличением этих значений в процессе рекультивации.

2. Для открытых поверхностей (в частности, песчаных) оптимально использовать разработанный и апробированный нами на НГЗ метод пыле-подавления с помощью покрытия камышово-тростникоматами, что также позволит увеличить влажность под прикрытием моты. Желательно под покровом мотов проводить подсев трав, которые способны рекультивировать такие участки в условиях песчаной почвы и дефицита влаги. Это может позволить установить значения экологической емкости до 0,3 единиц с последующим увеличением этого значения в процессе рекультивации.

Считаем, что полученные нами данные по использованию предложенных тут методов на полигонах НГЗ, позволяют нам предложить такую же стратегию и для ОС в зоне влияния ХАЭС.

Запорожская АЭС (ЗаAES).

На ЗаAES работают 6 энергоблоков.

Согласно требований НРБУ-97 касательно противорадиационной защиты населения от влияния радиационно-ядерных ядов и объектов, к которым принадлежит ЗаAES, осуществляется путем регламентации и контроля газоэрозионных выбросов и жидкостных сбросов радионуклидов. Для выполнения этих требований на ЗаAES установлены допустимые и контрольные уровни газоэрозионных выбросов и жидкостных сбросов радионуклидов. За период работы ЗаAES не зарегистрированы случаи превышения контрольного
уровня выбросов радиоiodа из вентиляционных труб ЗаАЭС (3,2±10⁻⁵ кБк/в сутки, допустимый 1,5х10⁶ кБк/сутки). За годы эксплуатации уровня выбросов радиоiodа составили от 0,1 до 1,3х10⁶ кБк/в сутки.

В среднем выброс ИРГ составляет 4,4 10⁻⁵ Бк/(МВт(эл) год. Выброс йода-131 составляет в среднем 5, 10⁴ Бк/(МВт(эл) год. Средний выброс радионуклидов йода составляет 1,2 10⁴ Бк/(МВт(эл) год. Активность цезия-137 в воздухе составляет около 2х10⁻⁷ Бк/м³. Среднесуточная бета-активность осаждения на поверхность составляет 2 Бк/м². Для реактора ВВЭР основной вклад в общую активность выброса составляет тритий. Тут его активность может составлять 3,3 10⁵ Бк/(МВт(эл) год.

Выбросы долгоживущих радионуклидов (ДЖН) из вентиляционных труб ЗаАЭС, составляли от 200 до 800 кБк/сутки. Средний уровень для ДЖН установлен на уровне 5,1 10⁵ кБк/сутки. Практически до сих пор превышений выбросов ДЖН на ЗаАЭС не происходит. Повышенные уровни, которые наблюдались в некоторые годы, были связаны с ремонтными работами. По официальным данным концентрации радионуклидов в воздухе приземного слоя атмосферы, подземных и поверхностных водах в районе размещения ЗаАЭС не превышали допустимых контрольных уровней и уровней, регламентированных НРБУ-97.

Эта картина, не включает таких явлений как локальное заметное выпадение радионуклидов на прилегающие экосистемы. Это могут быть места по розе ветров. Следует выполнить детальный мониторинг для выявления возможных опасных мест выпадений радионуклидов до уровня 0,1 Ки/км² и выше. Выявив такие участки концентрирования выбросов можно разработать для них способы рекультивации, ремедиации и дезактивации. Наши опыты на полигонах НГЗ позволяют нам предложить следующие наиболее оптимальные способы:

1. На задернованных участках для дезактивации можно предложить апробированный нами метод снятия дернины (Кд=20 единиц). Открытие вследствие дезактивации участки предлагаются закрепить для снижения пылеобразования наиболее оптимальным, апробированным нами методом и провести рекультивацию с подсевом трав на открытые поверхности. Таким образом, удается увеличить фактор экологической емкости и радиоемкости (надежности) до значений в 0,3-0,5 единиц с увеличением этих значений в процессе рекультивации.

2. Для открытых поверхностей (в частности, песчаных) оптимально использовать разработанный и апробированный нами метод пылеподавления с помощью покрытия камышово-тростниковыми матами, что также позволит увеличить влажность под покрытием матов. Желательно под покровом матов проводить подсев трав, которые способны рекультивировать такие участки в условиях песчаной почвы и дефицита влаги. Это может позволить установить значения экологической емкости (надежности) до 0,3 единиц с последующим увеличением этого значения в процессе рекультивации.

Считаем, что полученные нами данные по применению предложенных тут методов на полигонах НГЗ, позволят нам предложить такую стратегию и для ОС в зоне влияния ЗаАЭС.

Существующее на ЗаАЭС хранилище отработанного ядерного топлива не формирует заметных сбросов и выбросов в ОС, поэтому
Выводы по разделу.
1. Анализ материалов по условиям хранения и работы на территориях возможного переноса на ВостГОКе, ІЮ АЕС, Ха АЕС За АЕС, показал необходимость закрепления и пылеподавления пылиящих поверхностей, для защиты персонала, населения и ОС.
2. Экспертный анализ, и по результатам исследований нами было показано, что наиболее перспективными являются такие способы и методы: а) камышово-тростниковые маты; б) задернование; в) рекультивация
3. Эти методы были испытаны в полевых и лабораторных условиях, показали свою достаточно высокую эффективность по снижению показателей дефляции и устойчивости к условиям токсичности.
4. Анализ показывает, что технология пылеподавления и закрепления пылиящих поверхностей предусматривает ее использование на всех возможных компонентах ОС.
5. Для контроля за надежностью и эффективностью покрытий предусмотрена система мониторинга ветрового подъема и пылепереноса на самые ближайшие к опасным производствам территории.
6. С помощью ГИС технологии нами построены картосхемы территории ряда опасных объектов и определены показатели экологической емкости (надежности) сопряженных с ними элементов ландшафта.
7. По данным полученных картосхем экологической емкости могут быть установлены места потенциального загрязнения ОС и возможности использования предложенных методов пылеподавления.
8. Таким образом, нашими исследованиями заложены основы для создания макета и проекта будущей биотехнологии пылеподавления и закрепления красных шламов на шламохранилище НГЗ и других опасных объектах Украины.

2.7. Радиоэкологическая надежность склоновой экосистемы

Введение

Природные и техногенные катализмы, которые имеют место в Украине, выводят на первый план проблему оценки и прогноза состояния разного типа экосистем. Развиваемая нами теория и модели радиоемкости и надежности позволяют адекватно описать закономерности миграции и перераспределения радионуклидов в склоновых экосистемах и провести математическое моделирование изучаемого явления, а также даст возможность применять специальные контрмеры.

Одной из главных проблем радиоэкологии является миграция радионуклидов в экосистемах. Эта проблема стала особенно острой после аварии на ЧАЭС. И хотя прошло уже 29 лет после катастрофы, последствия ее мы еще будем ощущать еще не один десяток лет. Эта проблема прибирает глобальный масштаб, а ее социальные, экономические, правовые и моральные аспекты стали предметом широкого и остrego обсуждения на всех уровнях современного общества [1].

Наши времена характеризуется стремительным развитием атомной энергетики: все больше растет массы используемых радиоактивных веществ и источников нейтронизующего излучения в промышленности, медицине, сельском хозяйстве, на транспорте. Нет ни одной отрасли народного хозяйства, где бы в той или иной форме не использовалась атомная энергия.

Для оценки негативных экологических влияний самых разных факторов (аварийных ситуаций, загрязнения химическими веществами или радионуклидами, нерациональная хозяйственная деятельность, природные катастрофы и т.д.) в последние годы начали активно использовать подход, основанный на оценке риска неблагоприятных последствий. Спецификой экологического риска является, как правило, неравномерное распределение потенциальных последствий в пределах территории. Распределение риска зависит от распределения неблагоприятного фактора (концентрации токсиканта, интенсивности радиационного облучения, шума и т.д.), который может быть статичным или переменным. Так, загрязнение почвы любого региона вредными веществами может быть стабильным во времени и не зависит от переменных погодных условий [1].

В связи с этим, необходимо обосновать и разработать систему экологических нормативов на допустимые уровни загрязнения, что позволит принимать оперативные решения относительно безопасности людей и биоты типичных экосистем Украины и рекомендовать эффективные профилактические и терапевтические контрмеры по защите биоты и населения.
которое использует такие экосистемы для проживания, производства и рекреации[2].

Именно этим обусловлена актуальность направления, связанного с разработкой научных основ исследования и оценки экологической емкости и радиоемкости экосистем. Экологическая емкость и радиоемкость экосистем, определяется лимитом поступления поллютантов, в частности, радионуклидов, без реализации вреда и (или) гибели биоты экосистемы.

Особенно актуальны исследования склоновых экосистем, где происходит достаточно быстрое перераспределение радионуклидов. Актуальность состоит в необходимости глубокого и детального изучения природных условий и ресурсов склоновых и горных экосистем, возможностей всестороннего рационального использования их в новых общественно-экономических условиях, сохранение и охраны ландшафтных комплексов, исходя из перспективы развития этих регионов. Уникальные, чрезвычайно разнообразные ландшафтно-климатические условия горных и предгорных районов Крыма и Украинских Карпат, гарантируют исключительные возможности для развития рекреации и туризма, курортного хозяйства, заповедного дела [3].

Условия проживания и хозяйствования на склоновых территориях существенно отличаются от равнинных: спецификой горных ландшафтов и горного климата; развитием и прохождением природных процессов, явлений, несвойственных для равнин, не всегда своевременно предусматриваемых и прогнозируемых; частотой опасных гидрометеорологических ситуаций с катастрофическими последствиями, значительными материальными и моральными потерями.

В силу этих обстоятельств очень важными и актуальными является оценка и прогнозирование доз радиационного облучения человека для дальнейшего изучения и оценки рисков, связанных с авариями на радиационно-опасных производствах. Важно правильно оценить и спрогнозировать дозы от выбросов радиоактивных веществ.

При оценивании радиоэкологической опасности основным (но не единственным) критерием есть доза для населения, поскольку по ней можно прогнозировать риск последствий облучения.

В условиях существования возможности радионуклидных выбросов и сбросов от ядерных предприятий и радиационных установок, принято разрабатывать и использовать специальные контрмеры для защиты населения и окружающей среды от попадания радионуклидов и влияния радионуклидного загрязнения, особенно в склоновых экосистемах. Контрмеры могут применяться локально (непосредственно в месте загрязнения) и масштабно (при загрязнении радионуклидами значительных территорий).

Во всех случаях в разработке, планировании и реализации контрмер принято оценивать и прогнозировать их эффективность. Критериями для оценки эффективности контрмер является степень уменьшения средней индивидуальной дозы для персонала и (или) уменьшения коллективной дозы облучения для населения.

Цель данного раздела — установление и исследование параметров и особенностей процесса миграции радионуклидов в типичных склоновых экосистемах Украины и математическое моделирование исследуемого явления. Это дает возможность иметь методы и подходы для контроля, прогноза и управления радиоэкологической безопасностью для критических «уязвимых» экосистем Украины, а также возможность эффективного применения специальных контрмер.

В связи с этим были сформулированы следующие задачи:

1. Провести анализ типичных склоновых экосистем Украины и выбрать среди них наиболее характерные для исследования и моделирования.

2. Построить блок-схемы для камерных моделей избранных экосистем склонового типа, определить необходимые критические и базовые параметры переноса радионуклидов.

3. Используя экспериментальные и литературные данные установить и рассчитать величины и диапазон вариации числовых параметров скоростей переноса радионуклидов по камерным моделям для типичных склоновых экосистем Украины.

4. Построить и исследовать цикл камерных моделей для склоновых экосистем; установить основные пути и динамику миграции радионуклидов, разработать прогноз формирования дозовых нагрузок для населения, использующего избранные экосистемы.

5. Построить и исследовать цикл камерных моделей для склоновых экосистем при условии использования защитных контрмер для снижения экологической опасности для населения и окружающей среды.
6. Исследовать возможность страховой защиты населения регионов от радиационных рисков.

Здесь нами были использованы литературные сведения, результаты и данные натурных исследований поведения и перераспределения Сс137 в склоновых экосистемах, типичных для территории Украины. Был использован модифицированный нами метод камерных моделей для моделирования радиоэкологических процессов в склоновых экосистемах, разработан и реализован метод оценки и расчета параметров камерных моделей склоновых экосистем Украины по данным мониторинга и по литературным данным.

Разработана и построена математическая модель склоновых экосистем с оценкой формирования дозовых нагрузок для населения на долгосрочный период. Такая модель пригодна для моделирования практически любого типа экосистем Украины.

Впервые по расчетам на моделях показано, что в зависимости от параметров камерных моделей склоновых экосистем, формирование дозовых нагрузок у населения может быть заметным, что потребует контроля и прогноза с целью обеспечения экологической безопасности и разработки необходимых контрмер.

Разработанный нами подход по данным мониторинга позволяет устанавливать базовые характеристики и параметры камерных моделей склоновых экосистем.

Разработанные и использованные в исследованиях математические модели имеют универсальный характер, после привязки к конкретным натурным условиям других типичных склоновых экосистем, могут быть полезными для оценки, контроля и прогноза их экологической безопасности, как для радиоактивного загрязнения, так и для других поллютантов.

Важным заданием является изучение радиоэкологических аспектов влияния радионуклидов на человека и окружающую среду – методов расчета и оценки индивидуальных и коллективных доз облучения для больших популяций населения. Актуальными являются также проблемы проживания людей и ведения хозяйства на больших территориях, загрязненных радионуклидами вследствие Чернобыльской аварии, и прогнозирования радиоэкологических процессов в будущем. Оптимальным решением этих проблем может стать моделирование и прогнозирование радиоэкологических процессов в типичных экосистемах Украины. Именно моделирование дает возможность оценивать негативное влияние на экосистему различных видов загрязнений и вероятные результаты применения разнообразных стратегий оперативного управления.

Для моделирования нами была избрана типичная склоновая экосистема с залпововой аварией в источнике радиоактивного загрязнения.

Рис. 2.30. Блок-схема типовой склоновой экосистемы
Взаимодействие между камерами в модели задается с помощью коэффициентов перехода радионуклидов из одной камеры в другую за единицу времени, например, a_{67} – коэффициент перехода радионуклидов из камеры 7 (биота) в камеру 6 (вода) (доля радионуклидов в камере биота, которая переходит в камеру вода за единицу времени). Данные коэффициенты рассчитаны по реальным данным мониторинга в 30-мм зоне ЧАЭС, где есть похожий прототип склоновой экосистемы на берегу р. Уж. Они зависят от крутизны склона, характера покрытия (лес, трава и т.д.), типа почвы (чернозем, дерново-подзолистый, серый-лесной), объема стока, температуры воздуха, направления и силы ветра и других атмосферных параметров.

Перенос радионуклидов из одной камеры в другую происходит по законам кинетики первого порядка. Для исследования миграции радионуклида ^{137}Cs составлена система простых дифференциальных уравнений первого порядка с постоянными коэффициентами, каждое из которых характеризует определенную камеру (с учетом распада радионуклида для всех камер, кроме камеры люди; дело в том, что распад радионуклидов в камере люди, фактически и составляет режим формирования дозы облучения).

Способ определения параметров системы дифференциальных уравнений, которые описывают миграцию радионуклида ^{137}Cs в экосистеме склонов, представлен ниже.

Для камеры лес характерен плавный сброс радионуклидов вниз по склону. Другие камеры характеризуются постепенным увеличением накопления радионуклида в камерах с достижением пиковых значений и последующим уменьшением их содержания.

2) a_{32} – параметр, характеризующий скорость перехода радионуклида ^{137}Cs из камеры опушка в камеру луг.

На основе натурных данных установлено, что ^{137}Cs из опушки переносится на луг в количестве 5-15% от запаса радионуклидов на опушке. Увеличение этого параметра, по сравнению с параметром a_{21}, связано с другим характером покрытия, крутизной склона, характером стока.

\[
\begin{align*}
\frac{dx(t)}{dt} &= -0,06x(t), \\
\frac{dy(t)}{dt} &= 0,03x(t) - 0,13y(t), \\
\frac{dz(t)}{dt} &= 0,1y(t) - 0,18z(t), \\
\frac{dk(t)}{dt} &= -0,15z(t) - 0,63k(t), \\
\frac{dl(t)}{dt} &= 0,2k(t) - 0,33l(t), \\
\frac{dn(t)}{dt} &= 0,3l(t) + 0,05o(t) + 0,07p(t) - 1,23n(t), \\
\frac{do(t)}{dt} &= 0,5n(t) - 0,13o(t), \\
\frac{dp(t)}{dt} &= 0,05o(t) + 0,6n(t) - 0,1p(t), \\
\frac{dm(t)}{dt} &= 0,4k(t) + 0,1n(t).
\end{align*}
\]

(2.28)

3) a_{43} – параметр, характеризующий скорость перехода радионуклида ^{137}Cs из камеры луг в камеру террас.

Луг является зоной антропогенного влияния (выпас животных) и имеет относительно слабое покрытие (трава), поэтому доля переноса радионуклида ^{137}Cs по нашим оценкам будет составлять от 10 до 20% от запаса радионуклидов на лугу.

4) a_{54} – параметр, характеризующий скорость перехода радионуклида ^{137}Cs из камеры террас в камеру пойма.

Сельскохозяйственная терраса, которая получает радионуклиды, – это зона активной аграрной деятельности, поэтому перенос радионуклидов на пойму уже будет немного большим и составит от 10 до 30% от запаса радионуклидов на террасе.
5) a_{94} – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры терраса в камеру людей.

Человек активно использует аграрную террасу для получения продуктов питания растительного и животного происхождения. Известно, что на сельскохозяйственных угодьях потеря радионуклидов Cs137 может составить от 20 до 60 % от их запаса на аграрной террасе (кормовые травы, как правило, имеют высокие коэффициенты накопления).

Для приведем расчет параметра a_{94}. Пусть для избранной типичной экосистемы урожайность кормовой травы составляет высокий уровень - 4 кг с 1 м2 почвы. Коэффициент накопления из почвы в растения может составить 10, 20, 30. Коэффициент накопления рассчитывается по формуле, как было указано выше:

$$K_n = \frac{C_1}{C_2}, \quad (2.29)$$

где C_1 – активность радионуклида на 1 кг воздушно-сухой биомассы растений, C_2 – содержание радионуклида в 1 кг воздушно-сухой почвы, на которой эти растения выращены.

Если, кг почвы будет содержать 1 кБк Cs137, то запас этого радионуклида в 1 м2 будет составлять 200 кБк (поскольку 1 м2 почвы по весу приближительно равняется 200 кг). Если $K_n =10$, то в траве может быть 10 кБк в 1 кг сухой биомассы. То есть, вынос радионуклидов травой равен $K_n = 4 \cdot 10 = 40$ кБк. Поскольку весь запас составляет 200 кБк, то соответствующий параметр равен

$$v = \frac{K_n}{3} = \frac{40}{200} = 0,2 = 20\% = a_{94} \quad (2.30)$$

6) a_{86} – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры воды в камеру донные отложения.

Моделирование радиоемкости озерных экосистем показало, что от 40 до 80 % запаса радионуклидов в воде осаждается в донных отложениях.

7) a_{88} – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры донные отложения в камеру воды.

Известно, что обратная десорбция на порядок меньше и составляет от 4 до 10 %.

8) a_{76} – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры воды в камеру биота.

Биота при ее достаточной массе в озере может аккумулировать от 30 до 70 % от запаса радионуклидов в воде, благодаря большим коэффициентам накопления (от 1000 и больше).

9) a_{67} – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры биота в камеру воды.

Обратная миграция происходит на порядок медленнее и составляет от 3 до 7 %.

10) a_5 – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры пойма в камеру воды.

Этот параметр характеризует процесс отмывания биомассы озера. Биомасса в виде детрита откладывается в донных отложениях и составляет от 3 до 7 % от запаса всей биоты озера.

11) a_{65} – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры пойма в камеру воды.

По натурным данным установлено, что переход радионуклида Cs137 в воду озера, во время паводка может составить от 20 до 40% от запаса.

12) a_{68} – параметр, характеризующий скорость перехода радионуклида Cs137 из камеры воды в камеру людей прежде всего через использование воды для орошения растений на террасе и для питья.

Приведем пример расчета a_{68}. Для определения скорости миграции радионуклида Cs137 из камеры воды в камеру людей был выбран типовой населений пункт с жителями в количестве 1 тыс. людей, которые пользоваются водою из озера площадью 1 км2 и глубиной 4 м. Тогда запас воды в этом озере

$$V = 4 \cdot 10^4 \cdot m = 4 \cdot 10^6, m^3$$

(2.31)
Пусть площадь аграрной террасы данного населенного пункта составляет 100 га. Поскольку на орошение 1 га площади в год тратится приблизительно \(4 \cdot 10^3\) м³ воды, то на всю агротеррасу данного населенного пункта будет потрачено \(4 \cdot 10^5\) м³ воды. Тогда параметр составит
\[
a_{96} = \frac{4 \cdot 10^5}{4 \cdot 10^6} = 0,1 = 10\%\
\]
(2.32)

Для камеры люди максимальное накопление радионуклидов составляет 22 % от их запаса во всей экосистеме, что определяет дозовую нагрузку на популяцию людей, которые пользуются данной экосистемой. Основной составляющей дозы для людей является сельскохозяйственная терраса, на которой производится сельскохозяйственная продукция, которая интенсивно используется человеком.

Для анализа перехода радионуклидов из камеры в камеру были выбраны средние значения коэффициентов (таблица 2.1).

<table>
<thead>
<tr>
<th>(a_{ij})</th>
<th>Минимальные</th>
<th>Средние</th>
<th>Максимальные</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{21})</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>(a_{32})</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>(a_{43})</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
</tr>
<tr>
<td>(a_{54})</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>(a_{65})</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>(a_{67})</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>(a_{68})</td>
<td>0.04</td>
<td>0.07</td>
<td>0.1</td>
</tr>
<tr>
<td>(a_{76})</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>(a_{86})</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>(a_{87})</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>(a_{94})</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>(a_{96})</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Для уменьшения негативного влияния радионуклидов на загрязненных территориях необходимо применять защитные контрмеры. Нами проведен анализ эффективности контрмер для уменьшения дозовой нагрузки на популяцию людей.

Определенные контрмеры применяются в некоторых населенных пунктах на севере Украины, в частности в Ровенской области. Результаты исследований свидетельствуют о необходимости проведения постоянного контроля за радиологической ситуацией в регионе и коррекции мер по уменьшению дозовой нагрузки для населения. Влияние экономических и экологических факторов на формирование дозовых нагрузок для населения региона может резко обострить радиоэкологическую и радиологическую ситуацию. Поэтому без контроля и оперативного использования контрмер можно ожидать значительного ухудшения радиологической ситуации.

Одним из направлений разработки контрмер могут быть решения, которые способны управлять распределением и перераспределением радионуклидов в реальных ландшафтах. Как было сказано выше, основные процессы перераспределения радионуклидов происходят в склоновых экосистемах на водосборных площадях рек, болот и т.п. Таким образом, существует необходимость в создании специальной системы контрмержер, которые способны ограничивать миграцию радионуклидов по склонам и, тем самым, уменьшать экологическую опасность таких территорий.

В рассматриваемой типичной склоновой экосистеме, состоящей из девяти камер, нами предложены такие контрмеры.

1) Построение подпорных стенок между камерами. Построение каменной (бетонной) стены в почве на достаточную глубину, чтобы остановить жидкий и твердый сток (эрозию), и таким образом минимизировать миграцию радионуклидов в ниже лежащие элементы склонового ландшафта.

2) Построение дорог. Дороги, заасфальтированные или бетонные, за счет твердого покрытия и кюветов могут замедлять и переправлять стоки поллютантов. Это может быть использовано, как один из вариантов выбора контрмер для уменьшения дозовой нагрузки на людей.

3) Комбинированный метод – «подпорная стенка» и «дорога». Для моделирования и выбора оптимальной контрмеры был
рассмотрен комбинированный метод. Результаты моделирования позволяют выбрать наиболее эффективную контрмеру.

Оптимальным вариантом среди рассмотренных, является тот, который предусматривает размещение подпорной стенки и дороги между опушкой и лугом. В этом случае дозовая нагрузка для людей уменьшится до 4 % от запаса (вместо 22 %). Общую картину по эффективности применения оптимальной контрмеры представлено в таблице 2.2. В скобках для сравнения приведены данные моделирования без применения контрмер. Видно, что уменьшение содержания радионуклидов наблюдается не только в камере люди, но и в камерах пойма, вода, биота и донные отложения.

Таблица 2.2. Накопление радионуклидов в камерах с подпорной стенкой и дорогой между террасой и поймой

<table>
<thead>
<tr>
<th>Камеры</th>
<th>Максимальное содержание радионуклидов (%)</th>
<th>Время (годы)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опушка</td>
<td>12 (12)</td>
<td>12 (12)</td>
</tr>
<tr>
<td>Луг</td>
<td>6 (6)</td>
<td>18 (20)</td>
</tr>
<tr>
<td>Терраса</td>
<td>1.6 (1.4)</td>
<td>21 (20)</td>
</tr>
<tr>
<td>Пойма</td>
<td>0.35 (0.82)</td>
<td>24 (24)</td>
</tr>
<tr>
<td>Вода</td>
<td>0.14 (0.32)</td>
<td>32 (30)</td>
</tr>
<tr>
<td>Биота</td>
<td>0.46 (1.16)</td>
<td>41 (44)</td>
</tr>
<tr>
<td>Донные отложения</td>
<td>0.85 (2.3)</td>
<td>44 (48)</td>
</tr>
<tr>
<td>Люди</td>
<td>23 (22)</td>
<td>60 (80)</td>
</tr>
</tbody>
</table>

Графическое решение предложенной модели для камеры люди показано на рис. 2.31.

Рис. 2.31. График накопления радионуклидов для камеры люди: 1 – без применения контрмер, 2 – с применением контрмер

Нами рассмотрена возможность применения метода страховой защиты при радиационном загрязнении в экосистемах. В последние годы совершенствуется экономический механизм охраны окружающей среды Украины. Но основным недостатком экономического механизма является отсутствие действующих стимулов снижения негативного влияния на окружающую среду, отсутствие надлежащих условий для рационального использования природных ресурсов и применения ресурсосберегающих технологий, а также недостаточность объемов платежей за загрязнение окружающей среды и использования природных ресурсов. Те ставки, которые используются на сегодняшний день в случае загрязнения окружающей среды, не позволяют ни предупредить, ни компенсировать экологический ущерб.

Таким образом, важное значение имеет такой элемент экономического механизма охраны окружающей природной среды, как экологическое страхование. Определяться, на нашу мнению, должно осуществляться добровольное и обязательное государственное экологическое страхование предприятий, учреждений, граждан и объектов их собственности, на случай экологических стихийных бедствий, аварий и катастроф.

Целью данного этапа работы был подсчет величины экономического ущерба от радиоактивного влияние Cs137 на здоровье людей, которые проживают на склоновых ландшафтах: возникновение злокачественных опухолей, наследственных эффектов. В этих случаях необходимо устанавливать финансовые гарантии с целью страхования рисков. Учет особенностей ландшафтов при оценке радиационных рисков является целесообразным, поскольку даже от типа ландшафта зависят скорости миграции радионуклидов и, как следствие, прогнозируемые коллективная и индивидуальная дозы для населения. Это необходимо учитывать при подсчетах, которые будут определять стоимость страховых полисов.

Для подсчета ущербов от негативного влияния Cs137 на здоровье человека в случае аварийных ситуаций нами были использованы предварительные исследования распределения радионуклида в типичных склоновых экосистемах Украины. В случае возникновения аварийных ситуаций выброса радионуклида в экосистемы склонов, коллективная доза для населения зависит от скоростей миграции Cs137. Также она зависит от величины накопления
радионуклидов в камере люди, где накопление радионуклидов составляет 11%, 22% и 33% при минимальных, средних и максимальных скоростях миграции соответственно (таблица 2.3.).

Таблица 2.3. Значения прогнозированных доз и ущербов при радиационном загрязнении склоновой экосистемы

<table>
<thead>
<tr>
<th>Коллективная доза, произведенная в данном населенном пункте за 100 лет (Чел.Зв.)</th>
<th>Минимальные скорости</th>
<th>Средние скорости</th>
<th>Максимальные скорости</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0·10³</td>
<td>6,5·10³</td>
<td>2,14·10⁴</td>
<td></td>
</tr>
<tr>
<td>Общий убыток в данном населенном пункте за 100 лет, $</td>
<td>1,3·10⁸</td>
<td>2,6·10⁸</td>
<td>9,6·10⁸</td>
</tr>
<tr>
<td>Индивидуальный ущерб за год жизни в данном населенном пункте, $</td>
<td>32,5</td>
<td>65</td>
<td>240</td>
</tr>
<tr>
<td>Индивидуальная эквивалентная доза за год жизни в данном населенном пункте, мЗв/год.</td>
<td>0,75</td>
<td>1,6</td>
<td>6</td>
</tr>
<tr>
<td>Количество потерпевших, человек.</td>
<td>210</td>
<td>440</td>
<td>1680</td>
</tr>
</tbody>
</table>

То есть, с увеличением скоростей перемещения радионуклида по склону увеличивается и величина коллективных (от 3,0·10³ Чел.Зв. до 2,14·10⁴ Чел.Зв.), и индивидуальных (от 0,75 мЗв до 6 мЗв) доз облучения, и количество потерпевших (от 210 до 1680 человек из 40000 чел. населения), и экономический ущерб нанесенного вреда здоровью человека.

Производится распределение коллективной и индивидуальной дозы при разных случаях загрязнения склоновой экосистемы для населенного пункта, где проживает 500 человек, показан в таблице 2.4.

Нами был проведен расчет надежности транспорта радионуклидов по склоновой экосистеме. В расчетах были использованы литературные данные. Считается, что в лесу лежит запас радионуклида Cs137 в 1 Кн. Параметры озера: S = 1 км², Н = 5 м, V = 5 Е + 9 л.; параметры донных отложений: S = 1 км², h = 0,1 м, КН = 1000. Расчеты проведены без применения (таблица 2.5) и с учетом избранных контрмер (таблица 2.6).

Таблица 2.4. Распределения коллективной и индивидуальной дозы при различных случаях загрязнения склоновой экосистемы, при разных скоростях переходов между камерами.

<table>
<thead>
<tr>
<th>Минимальная скорость переходов.</th>
<th>Активность радионуклида, Ки</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коллективная доза, Чел/Зв</td>
<td>8,14·10⁻¹</td>
<td>4,07·10⁻¹</td>
<td>8,14·10⁻¹</td>
<td>3,256·10⁻¹</td>
<td></td>
</tr>
<tr>
<td>Индивидуальная доза, Зв</td>
<td>0,01628</td>
<td>0,814</td>
<td>1,628</td>
<td>6,512</td>
<td></td>
</tr>
<tr>
<td>КОЛЛЕКТИВНАЯ ДОЗА</td>
<td>Средняя скорость переходов.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Активность радионуклида, Ки</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Коллективная доза, Чел/Зв</td>
<td>1,628·10⁻²</td>
<td>8,14·10⁻²</td>
<td>1,628·10⁻³</td>
<td>6,512·10⁻³</td>
<td></td>
</tr>
<tr>
<td>Индивидуальная доза, Зв</td>
<td>0,3256</td>
<td>1,628</td>
<td>3,256</td>
<td>13,024</td>
<td></td>
</tr>
<tr>
<td>Максимальная скорость переходов.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Активность радионуклида, Ки</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Коллективная доза, Чел/Зв</td>
<td>2,442·10⁻²</td>
<td>1,221·10⁻³</td>
<td>2,442·10⁻³</td>
<td>9,768·10⁻³</td>
<td></td>
</tr>
<tr>
<td>Индивидуальная доза, Зв</td>
<td>0,4884</td>
<td>2,442</td>
<td>4,884</td>
<td>19,536</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.5. Надежность типичной склоновой экосистемы как системы транспорта Cs137 к озеру и к человеку (без контрмер).

<table>
<thead>
<tr>
<th>Камера</th>
<th>Вероятность сброса</th>
<th>Комментарии</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Лес</td>
<td>0,029</td>
<td></td>
</tr>
<tr>
<td>2. Опушка</td>
<td>0,77</td>
<td>Загрязнение воды ожидается с вероятностью 1x2x3x4x5x6 = 1,5 Е-3. Это означает, что содержание цезия в воде составляет всего 1,1 Е-2 Бк/л</td>
</tr>
<tr>
<td>3. Луг</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>4. Терраса</td>
<td>0,57 (к человеку – 0,4)</td>
<td>Загрязнение донных отложений в озере ожидается с вероятностью 1x2x3x4x5x6 = 9 Е-3. Это означает, что содержание цезия в донных отложениях составляет 3,3 Бк/л</td>
</tr>
<tr>
<td>5. Пойма</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>6. Биота озера</td>
<td>0,33</td>
<td>При Kd=1000, содержание цезия в биоте донных отложений составляет 3300 Бк/кг. Тогда по отношению к предельной дозе в 4Гр/год (600 кВ/кг), допустимый уровень загрязнения леса составляет 182 Ки.</td>
</tr>
<tr>
<td>7. Донные отложения</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 2.6. Надежность типовой склоновой экосистемы как системы транспорта Cs137 к озеру и к человеку (при участии контрмер)

<table>
<thead>
<tr>
<th>Камера</th>
<th>Дорога между лесом и опушкой; $K_D = 2$</th>
<th>Подпорная стенка в почве между террасой и поймой; $K_D = 2$</th>
<th>Влияние всех контрмер одновременно</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Лес</td>
<td>0,02</td>
<td>0,029</td>
<td>0,02</td>
</tr>
<tr>
<td>2. Опушка</td>
<td>0,4</td>
<td>0,83</td>
<td>0,4</td>
</tr>
<tr>
<td>3. Луг</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>4. Терраса</td>
<td>0,57 (к человеку: 0,4)</td>
<td>0,57 (к человеку)</td>
<td>0,12</td>
</tr>
<tr>
<td>5. Пойма</td>
<td>0,2</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>6. Биота озера</td>
<td>0,33</td>
<td>0,33</td>
<td>0,33</td>
</tr>
<tr>
<td>7. Донные отложения</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>8. Вода озера</td>
<td>0,77</td>
<td>0,77</td>
<td>0,72</td>
</tr>
<tr>
<td>9. Люди</td>
<td>0,4 +0,1</td>
<td>0,4 +0,1</td>
<td>0,4 +0,1</td>
</tr>
<tr>
<td>Вероятность сброса</td>
<td>2,7 E-4</td>
<td>8,7 E-4</td>
<td>5,8 E-5</td>
</tr>
<tr>
<td>1x2x3x4x5x6</td>
<td>$K_D(2)=5,6$</td>
<td>$K_D(2)=1,7$</td>
<td>$K_D(2)=25,9$</td>
</tr>
</tbody>
</table>

Выводы

1. Развиваемая нами теория и модели радиоемкости экосистем с использованием теории и моделей надежности, позволили адекватно описать закономерности миграции и распределения радионуклидов для разных типов экосистем водоемов и суши. Теория и модели радиоемкости позволяют, строго определять критические элементы экосистемы, где следует ожидать временного или конечного депонирования радионуклидов.

2. На основе шкалы дозовых нагрузок на экосистемы и их элементы удалось оценить предельные концентрации радионуклидов (Экологические нормативы), выше которых можно ожидать заметного влияния на структуру, биологические характеристики и параметры радиоемкости экосистем.

3. Закономерности перераспределения радионуклидов-трансферов в разных типах экосистем, описываемые моделями радиоемкости и надежности, позволяют на основе экологического нормирования определить предельно-допустимые сбросы и выбросы радионуклидов в конкретные виды экосистем.

4. Предлагаемый метод определения экологически обоснованных предельно-допустимых радионуклидных загрязнений экосистем и их компонентов может служить теоретической основой для системы экологического нормирования сбросов и выбросов, разных поллютантов в окружающую среду.

5. Подход на основе применения биогенных трассеров позволяет в рамках теории и моделей радиоемкости и надежности одновременно оценивать процессы миграции радионуклидов, определять дозовые нагрузки на биоту экосистем, и устанавливать фундаментальные параметры скоростей перераспределения радионуклидов и других поллютантов в разных типах экосистем.

Литература

ЧАСТЬ 3.
ПРОБЛЕМЫ ЭКОЛОГИЧЕСКОГО НОРМИРОВАНИЯ

3.1. Радиоемкость разных типов экосистем и принципы их экологического нормирования

Введение

В данной части книги теория радиоемкости экосистем применена для определения экологических нормативов на допустимые сбросы и выбросы радионуклидов в окружающую среду. Установлен конкретный предел радионуклидного загрязнения биоты, который может быть положен в основу экологического нормирования (200-1000 кБк/кг). Определены основные формулы оценки предельно допустимых сбросов в озерную экосистему.

Показано, что норматив на бентос в 10-100 раз жестче, чем экологический норматив на планктон и нектон. Показано, что существующие уровни радионуклидного загрязнения склоновых экосистем 30-км зоны ЧАЭС превышают предлагаемые экологические нормативы. Показана эвристичность применения теории радиоемкости к реальным экосистемам.

Представление о факторе радиоемкости было впервые введено Агге и Корогодиным для оценки радиоемкости непроточного пресноводного водоема в зоне Кыштымской аварии [1]. Предложенная ими формула для определения фактора радиоемкости позволяет рассчитывать долю радионуклидов, накопленных в донных отложениях пруда, служащих критическим звеном данной экосистемы и депонирующих основное количество радионуклидов, попавших в водоем:

\[F = \frac{kh}{H + kh}, \]

где k - коэффициент накопления радионуклидов в донных отложениях из воды; h - толщина активно сорбирующего слоя донных отложений; H - средняя глубина водоема. Для пресноводных озер района Кыштымской и Чернобыльской аварий расчетные и натурные значения F для Cs-137 составляют 0,6-0,9. Нами были предложены формулы для расчета фактора радиоемкости для самых

3.1.1. Проблемы экологического нормирования экосистем

В случае радионуклидных выбросов и сбросов в окружающую среду встает задача определения предельных значений поступления радионуклидов в экосистему, когда еще в результате их действия не следует серьезных изменений в самой экосистеме. Естественной границей для оценки предельно-допустимого сброса радионуклидов в экосистемы является дозовая нагрузка или мощность годовой дозы облучения. В работе Г.Г. Поликарпова была введена шкала дозовых нагрузок на экосистемы в виде 4-x основных дозовых пределов [4] (таблица 3.1):

<table>
<thead>
<tr>
<th>Номер дозового предела</th>
<th>Зона</th>
<th>Мощность дозы Гр/год</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Зона радиационного благополучия</td>
<td>< 0,001 – 0,005</td>
</tr>
<tr>
<td>2</td>
<td>Зона физиологической маскировки</td>
<td>> 0,005 – 0,05</td>
</tr>
<tr>
<td>3</td>
<td>Зона экологической маскировки: 3.1 а) наземные животные</td>
<td>> 0,05 – 0,4</td>
</tr>
<tr>
<td></td>
<td>3.2 б) гидробионты и наземные животные</td>
<td>> 0,05 – 4</td>
</tr>
<tr>
<td>4</td>
<td>Зона явных экологических эффектов: 4.1 а) драматических для наземных животных</td>
<td>≥ 0,4</td>
</tr>
<tr>
<td></td>
<td>4.2 б) драматических для гидробионтов и наземных животных</td>
<td>≥ 4</td>
</tr>
<tr>
<td>4.3</td>
<td>в) катастрофических для животных и растений</td>
<td>≥ 100</td>
</tr>
</tbody>
</table>

Из данной шкалы следует, что реальным дозовым пределом для сброса и "складирования" радионуклидов в экосистемах и их компонентах является мощность дозы, превышающая 0,4 – 4 Гр/год, когда по шкале можно ожидать начала проявления явных экологических эффектов на уровне биоты экосистемы. Нетрудно рассчитать дозовые нагрузки от излучений альфа - , бета - , гамма - излучающих радионуклидов для композиции Кыштымского и Чернобыльского выброса. По нашим оценкам суммарная доза в 0,4–4 Гр/год соответствует концентрации Cs-137 около 1000 кБк/л/кг в экосистеме или ее элементах (наземные растения и гидробионы) и около 200 кБк/л(кг) для экосистем с включением наземных животных, что в среднем составляет 600 кБк/л.

Поэтому необходимо руководствоваться этими величинами предельно-допустимых выбросов и сбросов в экосистемы? На основании данных шкалы можно ожидать, что при концентрациях радионуклидов в экосистемах и их элементах, выше указанных пределов, возможно проявление заметных экологических эффектов, включающих искажение видовой структуры биоты экосистемы, потерю и/или изменение радиоустойчивости отдельных видов, угнетение роста биомассы в биоценозах и даже гибель экосистемы (например "Рыжий лес") [3]. Такая ситуация может привести к непредсказуемым изменениям величин факторов радиоемкости экосистемы и ее элементов, их разрушению, а как результат - к новому перераспределению радионуклидов.

Возможна следующая последовательность эффектов в пресноводной экосистеме: отмирание биомассы населения водоема из-за ухудшающего эффекта дозы - подкисление воды - усиление деструкции радионуклидов из донных отложений - повышение радиоактивного загрязнения воды - новое повышение дозы на биоту и т.д.

Таким образом, если мы хотим сохранить благополучие в экосистемах, нам необходимо не допускать превышения этих пределов в экосистемах в целом, и/или конкретно в их биотических компонентах. Следует подчеркнуть, что существующая система нормирования сбросов и выбросов радионуклидов ядерными предприятиями практики не учитывает этих важнейших ограничений. Однако их необходимо учитывать для создания реальной системы экологического нормирования. Рассмотрим конкретные примеры оценки допустимых сбросов и выбросов для различных типов экосистем.

3.1.2. Оценка допустимых сбросов и складирования радионуклидов в пресноводном водоеме

Исходя из моделей радиоемкости пресноводного водоема (3.1), критическим биотическим элементом данной экосистемы может быть население донных отложений (бентос) и/или население
водной толщи. Формулы для оценки факторов радиоемкости донных отложений и биоты воды используются из работы [3]. Для радиоемкости донных отложений, а значит и бентоса может быть использована формула (3.1) в которой для оценки фактора радиоемкости бентоса в отношении Cs-137 применены следующие реальные величины: \(h = 0,1 \text{ м}; k = 1000, H = 4 \text{ м}. \) Тогда \(F \) - фактор радиоемкости для донных отложений составляет 0,9 для Cs-137.

Для оценки фактора радиоемкости биоценоза водной толщи пресноводного водоема нами предложена следующая формула:

\[
F_b = \frac{pH_{K_b}}{pH_{K_b} + kh + H},
\]

где \(p \) - плотность биомассы гидробионтов в воде (заметной считается величина биомассы 1- 10 г/м3; \(K_b \) - коэффициент накопления для биоценоза и его биотических компонентов водоема может достигать 1000 - 100000 единиц. В этом случае \(F_b \) - может составлять от малого значения 0,05 до очень высокого значения радиоемкости в 0,97, когда практически все радионуклиды сосредоточены в биотической составляющей водоема.

Используя формулу (3.1) нами была построена модель и формула для оценки радиоемкости каскада водохранилищ (3.3):

\[
F_c = 1 - \prod_{i=1}^{n} (1 - F_i)
\]

Данная модель радиоемкости была применена нами для оценки радиоемкости каскада Днепровских водохранилищ и определялась в реальных исследованиях после Чернобыльской аварии. На базе приведенных выше моделей и формул, а также зная оценку предельно - допустимых концентраций радионуклидов в элементах экосистемы, возможно, оценить критические сбросы и выбросы в экосистемы описанного типа:

1. Для бентоса донных отложений пресноводного водоема предельно - допустимый сброс радионуклидов в водоем (\(N_k \)) не должен превышать:

\[
N_k < \frac{LhS}{kF},
\]

где \(L \) - предел концентрации радионуклидов в водной биоте - 370 кБк/кг, \(S \) - площадь водоема, остальные обозначения приведены выше.

2. Для водной биоты (планктон, нейстон, высшие растения) в толще воде предельно допустимый сброс радионуклидов не должен превышать (\(Nb \)):

\[
N_b < \frac{LHS}{K_b(1-F)}
\]

где использованы обозначения формул (3.1,3.2,3.4). Для конкретного пресноводного водоема, где \(S= 2 \text{ км}^2, H= 4 \text{ м}, K_b =1000, F=0,7 \) критическая величина сброса радионуклидов составляет не более: \(Nb < 10 \text{ ТБк} \) в воду всего водоема. В то же время критическая величина сброса радионуклидов в воде для его бентоса оценивается по формуле (3.4) - \(N_k < 110 \text{ ГБк} \). Эта величина в 90 раз меньше, чем допустимый сброс, оцениваемый для всего населения водной толщи водоема.

В общем случае отношение оценок предельно-допустимых сбросов в воде по двум критическим звеньям - населению водной толщи и бентосу (мolluski, кишечнополостные и т.д.) определяется по следующей формуле:

\[
\frac{N_k}{N_b} = \frac{hK_b(1-F)}{K_FK_b}
\]

Из формулы (3.6) следует, что величина оценки экологического норматива - величины допустимого сброса радионуклидов в водоем, определяемая по возможному влиянию на состояние бентоса, значительно (от 10 до 100 раз) меньше, чем оценка по влиянию на состояние населения водной толщи водоема (фито - и зоопланктон, высшие растения в толще воды, нектон, нейстон и плейстон). Следовательно, в качестве экологического норматива следует выбрать наименьший уровень, т.е. 110 ГБк для данного водоема, в целом.

3. Аналогичные оценки предельно - допустимых сбросов можно дать и для других типов экосистем. В частности в системе каскадов водоемов (типа Днепровского каскада) критическим по дозовым нагрузкам является первое водохранилище - Киевское. В донных отложениях верхней части Киевского водохранилища
встречаются уровни содержания радионуклидов в донных отложениях, достигающие 600 кБк/кг и больше. Фактически это означает, что для верхней части водохранилища уровень осуществленного сброса достигает критического значения и здесь в населении бентоса можно ожидать заметных экологических последствий. Теоретически оцениваемый предельно - допустимый сброс радионуклидов в Киевское водохранилище оценивается всего в 59 ТБк, в то время как реальный запас радионуклидов Cs-137 в донных отложениях определенный по натурным измерениям составляет 259 ТБк [5], что уже значительно превышает предельно - допустимый сброс.

4. Наши оценки критических уровней радионуклидного загрязнения лесных экосистем, где основная масса (до 90%) радионуклидов концентрируется в подстилке, составляет, по нашим оценкам, плотность загрязнения в Nk < 1200 кБк/м², если L = 600 кБк/кг для лесной флоры и фауны и для лесной подстилки.

5. Для луговых экосистем наши оценки Нk < 22,2 МБк/м², когда 80-90% радионуклидов на непаханных лугах содержится в 5 см слое дернины. Для вспаханных после аварии лугов (глубина вспашки 20 см) дозовая нагрузка на биоту луга и поля несколько меньше (за счет разбавления) и тогда здесь оценка Nk дает 74-92 МБк/м² по плотности радионуклидного загрязнения.

6. Для населения биоты морских экосистем (прибрежное мелководье, на которое собственно и приходится основная биопродуктивность), при средних концентрациях биомассы в 10 г/м³ радиоемкость этих биоценозов достигает 0,9 - 0,99. Тогда в случае сброса больших масс воды с содержанием радионуклидов 6 – 60 кБк/л, это может привести к радионуклидному загрязнению сообществ биоты в 600 кБк/кг, что выше экологически допустимого уровня.

3.1.3. Оценка предельно-допустимых сбросов и складирования радионуклидов в склоновых экосистемах

Разработанная нами модель оценки радиоемкости склоновой экосистемы позволяет оценить время и место ожидаемого, в динамике миграции, концентрирования радионуклидов в некоторых элементах склоновой экосистемы. По формуле (3.7) может быть оценен фактор радиоемкости склоновой экосистемы (Fs), представленной на рис 3.1.

\[
F_j = 1 - \prod_{i=1}^{k} P_i = 1 - P_j, \quad (3.7)
\]

где Pi - вероятность стока радионуклидов из соответствующего элемента склоновой экосистемы за год (Р1- сток из лесной экосистемы, P2 - по каменистой осыпи, P3 -из луговой, а P4 - из экосистемы террасы в озеро). Практически это означает, что параметры миграции и концентрирования радионуклидов в лесу (вершина склоновой экосистемы), на опушке, на пойме, и/или в донных отложениях водотока (река, ручей, озеро, болото и т.д.) определяют, в конечном итоге, предельно - допустимый сброс радионуклидов в данную экосистему.

Рис 3.1. Блок- схема типовой склоновой экосистемы.
Расчетные кривые динамики перераспределения радионуклидов в такой модельной экосистеме при исходном уровне загрязнения леса в 3,7 ТБк, представлены на рис. 3.2. (здесь в расчетах для простоты радиоактивный распад не учитывается). Для случая сброса в лесную экосистему - $N_k(f)$ получена следующая формула (3.8):

$$N_k(f) < \frac{N_k(L)}{P_k \times T},$$

где $N_k(L)$ для конкретного озера оценивается в 110 ГБк, T - количество лет сброса (нами использованы оценки на 20 лет стока). Очевидно, что по динамике перераспределения радионуклидов в данной склоновой экосистеме, лимитирующим звеном служат донные отложения конечного элемента системы озера.

![Динамика радиоемкости склоновой экосистемы](image.png)

Рис. 3.2. Динамика распределения радионуклидов в модельной склоновой экосистеме

Видно, что практически 80% исходного запаса радионуклидов на водосборе озера, в динамике концентрируются в донных отложениях озера. При $S = 2$ км2, N_k по формуле (3.4) для такого озера оценивается в 110 ГБк, то это означает, что общий запас радионуклидов на водосборе озера для выдерживания экологическогонорматива для бентоса донных отложений озера не должен превышать 185-222 ГБк. При площади водосбора озера, например в 10 км2, плотность загрязнения не должна превышать 370 кБк/м2, что достаточно мало, если сравнить с существующими уровнями радионуклидного загрязнения территории 30-км зоны ЧАЭС и других территорий Украины, Беларуси и России.

Практически это означает, что исходное радионуклидное загрязнение территории может быть достигнуто благополучным для исходной ситуации загрязнения (например, леса), но в результате поверхностного стока и/или миграции радионуклидов в каком-либо другом элементе экосистемы может произойти значительное концентрирование радионуклидов, а значит, может быть превышен предельно допустимого уровень загрязнения в 600 кБк/кг. Таким образом, начальное загрязнение в радионуклидном загрязнении экосистемы, может означать последующее неблагополучие в будущем, в зависимости от скоростей процессов переноса и концентрирования радионуклидов.

Иначе говоря, экологически обоснованный предельно – допустимый сброс радионуклидов в экосистему зависит не только и
не столько от исходного загрязнения (сбросов и выбросов), но и от характеристик динамики радиоемкости конкретных типов экосистем. Очевидно, что в условиях радиоуclideного загрязнения в результате аварии на ЧАЭС значительных территорий, которые богаты озерами, малыми реками, болотами, во многих из них можно ожидать превышения расчетного \(N_k \) - предлагаемого экологического норматива - для населения их донных отложений. Особенно это касается поверхностных водоемов и водоотоков 30-км зоны ЧАЭС.

Проводимые в этой зоне обширные исследования показывают, что на малых озерах зоны уже наблюдается превышение уровня радиоуclideного загрязнения 600 кБк/кг в донных отложениях, а как следствие могут регистрироваться изменения в характеристиках популяций видов и целых сообществ, обитающих в донных отложениях этих озер [3]. Мы полагаем, что данная область наблюдения реальных и ожидаемых дальнейших эффектов в бентосных организмах, заслуживает самого пристального внимания, важных для становления системы экологического нормирования [6].

3.2. Экологическое нормирование радиационного фактора

Этот раздел посвящен общей проблеме экологического нормирования допустимых сбросов и выбросов разных радиоуclideов в любые экосистемы. Это важно потому, что существует настоятельная потребность согласовать эти процессы на основе экологического нормирования, а не только на базе гигиенических стандартов, которые доминируют в современной экологии. Существующая парадигма современной экологии об отсутствии проблем для биоты в случае выдерживания норм для человека является в целом неверной, и практически всегда не выполняется, на что указывают современные исследования и расчёты. Это в первую очередь связано с теми фактами, что человек способен избегать негативных влияний поллютантов, а биота, как правило, не может этого делать. Поэтому данный раздел книги посвящён обсуждению этой важной проблемы.

3.2.1. Зонирование дозового влияния на экосистемы

В большинстве радиологических ситуаций биота в среде, где она растет, подвергается одновременно внешнему (от источников облучения, которые находятся вне биоты) и внутреннему (от инкорпорированных в тканиях радиоуclideов) облучению. В биоценозе, который облучается, по отношению к организмам, которые рассматриваются, источниками облучения могут стать инкорпорированные (накопленные) радиоуclideиды, которые содержатся в соседних организмах. Для отдельных органов растений и животных внешними также являются источники, которые находятся в других частях этого же растения или животного.

При загрязнении биоценозов искусственными радиоуclideами на начальном этапе радиоактивные вещества находятся на поверхности почвы, воды и в контакте с растениями или животными. Только через определённый промежуток времени радиоуclide исчерпываются абиотической составляющей экосистемы под влиянием ветра, роста биомассы и осадков, которые появляются, а также перемещаются в глубину почвы и водоема в результате миграционных процессов или антропогенных мер.

В случае радиоуclideных выбросов в окружающую среду возникает необходимость определения экологических значений поступления радиоуclideов в экосистему, когда вследствие их действия ещё не осуществляются существенные изменения в самой экосистеме.

Природной мерой для оценки предельно-допустимого выброса радиоуclideов в экосистему является дозовая нагрузка, или мощность годовой дозы облучения. В работе Г.Г. Поликарпова и В.Г. Цыцугиной была введена шкала дозовых нагрузок на экосистемы в виде четырех дозовых границ (см. таблицу 3.1).

Ниже приведена таблица 3.2., дозовых коэффициентов для дикой биоты, разработанная Б. Амиро [7].

Из шкалы (см. таблицу 3.1.) выплавляет, что реальной дозовой границей для сброса и „складирования” радиоуclideов в экосистемах и их компонентах может быть мощность дозы, которая не превышает 0,4-4,0 Гр/год, когда по шкале (таблица 3.1.) можно ожидать проявления явных экологических эффектов. Согласно оценок, мощность фона облучения в 0,4-4,0 Гр/год отвечает концентрации \(^{137}\)Cs около 1000 кБк/кг в экосистеме или ее компонентах (наземные растения и гибридобионт) и около 200 кБк/кг для экосистем с включением наземных животных, что в среднем составляет 600 кБк/кг. Расчёты могут быть проведены на основе дозовых коэффициентов, разработанных В. Амиро представлены у таблице 3.2.
Таблица 3.2. Величины значений дозовых коэффициентов для биоты экосистем по некоторым радионуклидам [7].

<table>
<thead>
<tr>
<th>Радионуклид</th>
<th>Внутреннее облучение Гр/год/Бк</th>
<th>Внешнее облучение</th>
<th>От воды Гр/год/Бк</th>
<th>От воздуха Гр/год/Бк</th>
<th>Кн</th>
<th>Ветрогон ГР/год</th>
</tr>
</thead>
<tbody>
<tr>
<td>137Cs</td>
<td>4,1 10^{-6}</td>
<td>2,1 10^{-9}</td>
<td>1,72 10^{-9}</td>
<td>4,02 10^{-9}</td>
<td>1,72 10^{-9}</td>
<td></td>
</tr>
<tr>
<td>60Co</td>
<td>2,88 10^{-3}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>63Ni</td>
<td>3,44 10^{-6}</td>
<td>1,76 10^{-9}</td>
<td>1,43 10^{-9}</td>
<td>2,64 10^{-9}</td>
<td>1,43 10^{-9}</td>
<td></td>
</tr>
<tr>
<td>65Zn</td>
<td>3,52 10^{-6}</td>
<td>1,57 10^{-9}</td>
<td>1,43 10^{-9}</td>
<td>2,36 10^{-9}</td>
<td>1,43 10^{-9}</td>
<td></td>
</tr>
<tr>
<td>90Sr</td>
<td>2,86 10^{-5}</td>
<td>1,48 10^{-10}</td>
<td>7,73 10^{-8}</td>
<td>2,22 10^{-9}</td>
<td>7,73 10^{-9}</td>
<td></td>
</tr>
<tr>
<td>137Cs</td>
<td>2,64 10^{-5}</td>
<td>3,72 10^{-12}</td>
<td>2,35 10^{-9}</td>
<td>5,58 10^{-9}</td>
<td>2,35 10^{-9}</td>
<td></td>
</tr>
<tr>
<td>85Kr</td>
<td>9,92 10^{-7}</td>
<td>3,07 10^{-10}</td>
<td>2,83 10^{-7}</td>
<td>4,61 10^{-7}</td>
<td>2,83 10^{-7}</td>
<td></td>
</tr>
<tr>
<td>239Pu</td>
<td>1,12 10^{-4}</td>
<td>8,91 10^{-9}</td>
<td>6 10^{-6}</td>
<td>1,43 10^{-5}</td>
<td>6 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>14C</td>
<td>2,5 10^{-7}</td>
<td>6,51 10^{-12}</td>
<td>6,01 10^{-9}</td>
<td>9,77 10^{-9}</td>
<td>6,01 10^{-9}</td>
<td></td>
</tr>
</tbody>
</table>

Данные таблицы 3.2. по модели разработанной Б. Амиро, позволяют рассчитывать дозовые нагрузки на дикую биоту в разных типах экосистем, от внешнего и внутреннего облучения, а также от воздействия радионуклидов, накопленных соседними организмами растений и животных.

3.3. Экологическое нормирование в озерной экосистеме
3.3.1. Результаты моделирования допустимых сбросов в озерную экосистему

По оценке предельно допустимых концентраций радионуклидов 137Cs в элементах экосистемы, возможно, оценить критические сбросы и выбросы в экосистемы (начем с примера – озеро). На основе модели радиоемкости озерной экосистемы нами показано, что для бентоса донных отложений пресноводного водоема предельно допустимый сброс радионуклидов в водоем (Нп) не должен превышать следующую величину, представленную в формуле (3.4).

Для биоты, которая живет в толще воды, предельно допустимый сброс радионуклидов не должен превышать (Нп) (см. формулу 3.5.).

3.3.2. Анализ и расчет допустимых сбросов радионуклидов в озеро

Допустим, что в озеро площадью в 1 км² было сброшено всего 1 МБк 137Cs. Пусть глубина озера равняется 5 м, толщина активного слоя земли – 10 см, Кн иллов – 200. В таком случае, при рассмотрении варианта, когда Кн биоты, живущей в донных отложениях составляет от 1 до 100000. Проведем анализ того, какие количества радионуклидов можно сбросить в такое озеро с тем, чтобы доза на биоту бентоса не превышала критический предел в 4 Гр/год. Используя, выше приведённые формулы, проведём расчёт допустимых сбросов 137Cs (см. табл. 3.3). Рассчёты проведены таким образом. Зная закономерность перераспределения радионуклидов по компонентам озерной экосистемы можно установить уровни радиоактивности в этих составляющих. Помимо, опираясь на таблицу дозовых цен или коэффициентов (табл. 3.2.), можно рассчитать составляющие дозы на биоту от разных компонент озерной экосистемы при разных значениях Кн биоты бентоса. Суммируя дозу по соответствующим столбцам табл. 3.3., мы рассчитаем суммарную дозу на бентос при величине исходного сброса радионуклидов всего в 1 МБк 137Cs. Далее берём, например, суммарную дозу в последнем столбце, которая равняется 4,7х10^{9} Гр/год, это при сбросе в 1 МБк. А если допустимая доза на биоту была установлена, не должна превышать 4 Гр/год, то получим арендную величину 4 Гр/год на оценочную величину 4,7х10^{9} Гр/год, мы имеем оценку коэффициент-Бк в допустимом сбросе, что составляет – 8,5х10^{8} Бк/год, или 0,023 Ки/год. Таким образом, следует отметить, что при сверхвысоких значениях Кн биоты (100000 единиц) допустимый годовой сброс радионуклидов в данное озеро, может составить очень малую величину всего 0,023 Ки/год на 1 км² площади озера.

Аналогичный расчёт мы провели для другого биогенного радионуклида – 90Sr. Видно, что в зависимости от Кн биоты допусти-
Таблица 3.3. Расчёт величины дозы на компоненты озерной экосистемы и допустимого годового сброса 137Cs в зависимости от значений K_n для биоты бентоса *

Дозы от компонент озерной экосистемы, которые действуют на биоту	K_n биоты донных отложений озера (бентоса)					
	1	10	100	1000	10000	
От воды (Гр)	5,4-9	5,4-9	5,4-9	5,4-9	5,4-9	
От донных отложений (Гр)	3,2-8	3,2-8	3,2-8	3,2-8	3,2-8	
От вегетирующей рядом биомассы озера (Гр)	1,4-8	1,4-7	1,4-6	1,4-5	1,4-4	
Внутренняя доза (Гр)	3,3-8	3,3-7	3,3-6	3,3-5	3,3-4	
Суммарная доза на биоту (Гр)	5,2-8	4,8-7	4,7-6	4,7-5	4,7-4	
Допустимый сброс в озеро 137Cs за год	7,7+13 Бк	8,4+13 Бк	8,4+11 Бк	8,5+10 Бк	8,5+9 Бк	8,5+8 Бк
	2100 Кн	220 Кн	22 Кн	2,3 Кн	0,23 Кн	0,023 Кн
Допустимый сброс в озеро 90Sr за год	3,9+14 Бк	3,8+13 Бк	3,9+12 Бк	3,9+11 Бк	3,9+10 Бк	3,9+9 Бк
	7800 Ки	1020 Ки	105 Ки	10,5 Ки	1 Ки	0,1 Ки

* 5.2-9 означает 5,2·10^9 и т.п.

мыс сбросы в данное озеро составляют для 137Cs от 0,023 до 2100 Ки за год, а для 90Sr – от 0,1 до 7800 Ки в год. И это если основные сбросы происходят только один год, как это было при аварии на ЧАЭС. Если это действующие АЭС, то понятно, что допустимые сбросы за год будут значительно меньше, чтобы они не превысили дозовые пределы. То есть при реальных значениях K_n для данной биоты, могут действовать жесткие пределы на допустимые уровни сбросов в такую озерную экосистему. При этом в большинстве случаев уровни загрязнения воды, на которую существуют гигиенические нормативы (2 Бк/л для 137Cs) \([8]\), будут оценены, как значительно меньше, чем эти гигиенические нормативы. Таким образом, анализ показывает, что реально в этом случае озерной экосистемы экологический норматив может быть оценен, как много более жестким, чем известный гигиенический норматив.

В целом в радиоэкологии в сфере экологического нормирования доминирует, выше упомянутая парадигма, “если в радиоэкологической ситуации хорошо жить человеку, то биоте тем более ничего не повредит”. Анализ, который был нами проведен, показывает, что это совсем не так. То есть безопасная для человека ситуация может обернуться высокими дозами для биоты вследствие перераспределения радионуклидов и высоких значений K_n, которые свойственны для биоты.

То есть, в условиях озера, когда гигиенические нормативы на питьевую воду легко можно выполнить, а пределы на дозу для биоты озера могут быть реально невыполнимыми.

Следует подчеркнуть, что превышение дозовых пределов на биоту донных отложений может привести к отмиранию части биоты, а это в свою очередь приведет к подкислению водной среды (pH может упасть до значений 5-6), что, в свою очередь, может вызвать десорбцию радионуклидов, которые накоплены в донных отложениях. А это будет означать значительное повышение загрязнения воды, которое очевидно будет превышать и гигиенические нормативы и т.д.

Понятно, что установление реальной действующих экологических нормативов для Украины и других государств задача очень и очень не простая. Проблема в том, что практически невозможно установить единые экологические нормативы на допустимые сбросы радионуклидов для разных экосистем. Каждое озеро, вообще любая отдельная экосистема, будет требовать разработки специальной модели и оценки действующей величины экологического норматива. Но проблема остается и ее необходимо разрабатывать. Такие же проблемы возникают и для других типов экосистем.

3.4. Экологическое нормирование для склоновой экосистемы

Наблюдения в зоне ЧАЭС за перераспределением радионуклидов в склоновых экосистемах на берегу реки Уж, показали быструю динамику и концентрирование радионуклидов на береговой террасе и в донных отложениях реки. Нами была построена модель радиоемкости склоновой экосистемы и показана ее эвристичность (см. формулу 3.3). Таким образом, можно считать, что анализ радиоемкости, перспективный подход и в случае линейно организованных экосистем по типу склоновых. Разработанные модели позволяют оценивать и прогнозировать закономерности распределения радионуклидов и определять критическую биоту, которая может получить заметные дозовые нагрузки (см. рис 3.1.).
Для анализа выбрали простую склоновую экосистему: лес ⇒ каменистая ось ⇒ луг ⇒ терраса ⇒ озеро.
Результаты моделирования динамики перераспределения радионуклидов в такой склоновой экосистеме были приведены на рис. 3.2.
Установлено по результатам моделирования, что критическим звеном, который определяет радиоемкость всей склоновой экосистемы, является биота донных отложений озера в данной склоновой экосистеме.

3.4.1. Оценка экологических нормативов на предельно допустимые сбросы и депонирование радионуклидов в склоновых экосистемах

Разработанная модель оценки радиоемкости склоновой экосистемы позволяет оценить время и место, ожидаемого в динамике миграции, концентрирования радионуклидов в некоторых элементах склоновой экосистемы. По формуле (3.7) может быть оценен фактор радиоемкости склоновой экосистемы (Fk), оценки которого представлены на рис. 3.2.
Практически это означает, что параметры миграции и концентрирования радионуклидов в лесу (верхушка склоновой экосистемы), на опушке, на лугах, на террасе и на пойме озера, и/или в донных отложениях водотока (речка, ручей, озеро, борото и т.п.) определяют в конце концов, предельно допустимый сброс радионуклидов в данную экосистему. Для случая первичного сброса радионуклидов только в лесную часть экосистему (Nk(L)) величина загрязнения и сброса получена следующая формула (неравенство) (см. формулу 3.4.).

3.4.2. Расчёт и анализ допустимых сбросов радионуклидов в склоновой экосистеме

Рассмотрим, для примера, относительно простую склоновую экосистему, которая составлена из 4-х компонент: лес; луг; сельскохозяйственная терраса; озеро. Вероятности сброса, которые фигурируют в формуле (3.7), установим в виде таких реальных значений: лес-луг = 0,03; луг-терраса = 0,1; терраса-озеро = 0,2. Как показал предыдущий расчёт, критическим в этой склоновой экосистеме будет донная биота озера. Для примера проанализируем вариант, когда Kн донной биоты составляет 10^4 единиц. Тогда, если допустить, что процесс поверхностного стока по склоновой экосистеме такой, как было рассчитано в табл. 3.3, то допустимый уровень разового годового сброса не должен превышать 2,3/20 = 0,11 Кт/год. Исходя из такой оценки, можно рассчитать, что уровень загрязнения террасы не должен превышать величину 0,11/0,2 = 0,55 Кт. Для выполнения такой оценки уровень загрязнения лугов не должен превышать величину 0,55/0,1 = 5,5 Кт. Тогда мы можем рассчитать величину допустимого загрязнения источника поступления радионуклидов в данную склоновую экосистему – лесной компонент; не должен превышать величину: 5,5/0,03 = 183 Кт. Это общий запас радионуклидов во всей лесной экосистеме. А если площадь леса составляет около 10 км², то плотность его загрязнения не может превышать 18 Кт/км².
Такой уровень загрязнения практичеески реализован на значительной территории 30-километровой зоны отчуждения Чернобыльской аварии и сел 2, 3 зоны отчуждения. Это означает, что даже при существующих уровнях загрязнения радионуклидами склоновых экосистем, можно ожидать в депонирующих компонентах (в нашем примере, это озеро) превышения предельных дозовых нагрузок на биоту. Еще следует заметить, что в выбранном нами примере загрязнённым считается только источник – лесная компонента склоновой экосистемы. Реальные ситуации в Украине такие, что первичное загрязнение может лежать на всех составляющих склоновой экосистемы. В этом реальном случае уровни допустимого загрязнения составляющих склоновой экосистемы будут значительно более жесткими.

3.4.3. Расчет и анализ допустимых сбросов радионуклидов в лесной экосистеме
Даже в выбранном простом типе склоновой экосистемы, критической составляющей биоты экосистемы, кроме донной биоты озера, следует рассмотреть и ситуацию в лесной экосистеме. Анализ радиоэкологий лесной экосистемы показывает, что в лесу можно ожидать заметных дозовых нагрузок в подстилке, где также могут быть достигнуты критические значения доз. Известно, что состояние лесной подстили определяют комплекс видов редуцентов (червей, микоризные грибы, микроорганизмы и т.п.). Если радионук-
лидное загрязнение приведет к угнетению и/или гибели биоты лесной подстилки, то это может привести к гибели всего леса.

Рассмотрим пример такой лесной экосистемы и проведем расчёты допустимых уровней загрязнения леса (для гипотетического уровня сброса в лес 1 МБк/км² по 137Cs) по методике расчёта, которую мы использовали в разделе 3.3.1. при рассмотрении ситуации в озерной экосистеме. В лесной экосистеме наблюдается развитие ситуации в аналогичном направлении. Уровень распределения загрязнения в лесу такой: в подстилке находится около 80 % от всего загрязнения 137Cs, в почве – 10 %, еще 10 % радионуклидов находится в древесине. \(K_d \) для древесины леса оценивается в 1, \(K_n \) – для биоты лесной подстилки варьирует в значениях 1, 10, 100 (таблица 3.4). Коэффициент ветрового подъёма радионуклидов в лесу невелик, и составляет не более \(10^{-6} \) м⁻¹.

Таблица 3.4. Расчёт величин дозы (Гр) на компоненты лесной экосистемы и допустимого годового сброса 137Cs в зависимости от значений \(K_d \) для биоты лесной подстилки.

<table>
<thead>
<tr>
<th>Доза от составляющих лесной экосистемы (Гр/год)</th>
<th>(K_d) – коэффициент накопления радионуклидов из почвы биотой лесной подстилки</th>
</tr>
</thead>
<tbody>
<tr>
<td>От воздуха</td>
<td>1-13</td>
</tr>
<tr>
<td>От почвы</td>
<td>1-9</td>
</tr>
<tr>
<td>От подстилки</td>
<td>6-4-8</td>
</tr>
<tr>
<td>От древесины</td>
<td>4-3-10</td>
</tr>
<tr>
<td>Внутренняя доза для биоты лесной подстилки</td>
<td>6-5-8</td>
</tr>
<tr>
<td>Суммарная доза</td>
<td>1,3</td>
</tr>
<tr>
<td>Допустимый сброс в лес 137Cs (Бк/км²) за один год</td>
<td>3,1-13</td>
</tr>
<tr>
<td>Допустимый сброс в лес 137Cs (Ки/км²) за один год</td>
<td>837</td>
</tr>
<tr>
<td>Допустимый сброс 90Sr (Ки/км²) за один год</td>
<td>4500</td>
</tr>
</tbody>
</table>

Запись в таблице 3,4–10 означает 4,3·10^10.

Оценивая суммарную дозу на биоту подстилки от гипотетического уровня сброса в лес в размере 1 МБк/км² по 137Cs, мы получим такую оценку дозы при \(K_d = 100 \), в величине 6,6·10⁻⁶ Гр/год. А предельно-допустимая доза, как мы оценили, составит 4 Гр/год. Снова, как и в предыдущем случае, решаем пропорцию (4 Гр/6,6·10⁻⁶ Гр) 1 МБк = 6,1·10¹¹ Бк/год для варианта с \(K_d = 100 \). Для меньших значений \(K_d \), имеем и большие уровни допустимых уровней сброса радионуклида 137Cs в лесную экосистему. Следует заметить, что при \(K_d = 100 \), допустимый сброс 137Cs не должен превышать 16,5 Ки/км². Одновременно в предыдущем расчете, для склоновой экосистеме мы получили оценку допустимого сброса радионуклидов 137Cs в лесную экосистему в размере 18 Ки/км². Тут данные обеих расчётов близки друг другу. Но для склоновой экосистемы, какими являются практически все экосистемы Украины, следует четко рассчитывать, какая именно биота является критической по дозе. То есть, где именно при реальных оценках \(K_d \) и \(K_n \) можно раньше ждать превышения установленного предела для экологического норматива в 4 Гр/год. Априори, этого нельзя сказать. Поэтому каждый раз, начиная расчёты для конкретных локальных экосистем, нужно сравнивать степень критичности разных составляющих биоты реальной локальной экосистемы и оценивать для нее экологический норматив на допустимые уровни загрязнения экосистемы. Задача достаточно сложна, поскольку требует серьезного научного исследования значений \(K_d \), \(K_n \) т.д. для установления критической составляющей биоты, на которую необходимо ориентироваться при расчётах экологических нормативов на допустимые сбросы в них разных радионуклидов.

Более того, такие оценки могут меняться по разным сезонам года (в какой сезон происходят сбросы), от интенсивности сбросов, от динамики роста биомассы биоты и ее видовой структуры и т.д. Но все это, в первую очередь, и означает жесткую необходимость проведения таких исследований и расчётов. Особенно это важно в условиях влияния на биоту разных поллютантов, при возможности их синергического (взаимно усиливающего) действия на биоту экосистем. Без проведения таких исследований и оценок можно легко потерять не только отдельные виды биоты, а и всю биотическую компоненту, которая обеспечивает благополучие и даже выживание экосистем разного уровня.

До сих пор мы говорили об отдельных локальных экосистемах (озеро, лес и т.д.), и о линейных экосистемах (склоновые
3.5. Экологическое нормирование в ландшафте методами аналитической ГИС (геоинформационной системы) технологии

3.5.1. Фактор радиоемкости экосистемы

Для оценки состояния и благополучия экосистем используют до 30 разных показателей и параметров: от показателя разнообразия видов до биомассы и др. Важной особенностью этих показателей является то, что практически все они начинают существенно изменяться только тогда, когда биота показывает значительные изменения. С практической точки зрения важно иметь показатели и параметры, какие позволяли бы опережающим образом оценивать состояние биоты экосистем и особенности распределения и перераспределения поллютантов в реальных ландшафтах.

На основе экспериментальных исследований и теоретического анализа предложено использовать такую меру, как радиоемкость и/или фактор радиоемкости экосистем и ее составляющих.

Радиоемкость, как мы уже упоминали выше, определяется как предельное количество поллютантов (радионуклидов), которые могут аккумулироваться в биотических компонентах экосистемы без нарушения ее основных функций (восстановления численности и кондиционирования среды существования). Фактор радиоемкости определяется как часть поллютантов, которые накапливаются в той или иной части экосистемы (в ландшафте). Для оценки благополучия биоты в экосистеме нами было предложено использование в качестве определяющих двух основных параметра: биомасса видов в экосистеме и их способность оцишать (кондиционировать) среду от отходов жизнедеятельности и поллютантов, которые попадают в экосистему.

3.5.2. Концепция трассеров в радиоэкологии

Наши локальные исследования проводились на водной культуре растений, с использованием 137Cs как трассера, через поведение которого можно оценивать влияние на экосистемы разных факторов биотического и аббиотического происхождения. Исследования поведения и перераспределения трассера 137Cs Чернобыльского происхождения проводились в натурных экспедиционных исследованиях на склоне около р. Уж в 30-км зоне ЧАЭС возле с. Новоселки.

Исходными материалами для примененной нами математической модели и ГИС-анализа являются картографические материалы, данные полевых исследований и дистанционного зондирования, статистические материалы по природным и антропогенным характеристикам территории исследования, показателями ее загрязнения, а также любые другие материалы, которые имеют пространственную привязку и могут быть переведены в компьютерный формат для использования в рамках данной модели.

Исходные материалы проходят предварительную обработку, которая включает в себя сканирование и графическую коррекцию, регистрацию и геометрическую коррекцию, векторизацию и классификацию информации, группирование полученных векторных информационных слоев и их объединение с базами данных. Предметно эту работу по использовании ГИС-технологии проводил В.В. Родина [3].

Проведённый цикл исследований на модельной экосистеме (водной культуре растений) показал, что фактор радиоемкости биоты по отношению к искусственному трассеру (137Cs) является очень чувствительным показателем. Чем выше фактор радиоемкости биоты модельной экосистемы, тем лучше удерживается трассер в биоте и тем больше степень благополучия биоты. Мы расширили этот подход на реальные экосистемы – озеро, каскад водоемов. Показано, что действительно изменения параметров радиоемкости могут служить адекватным показателем распределения и перераспределения радионуклидов в экосистеме и мерой благополучия биоты в ней. Таким образом, перспектива подхода с позиций моделей радиоемкости для анализа локальных экосистем четко показана.

Наблюдения в зоне ЧАЭС за перераспределением радионуклидов в склоновых экосистемах на берегу р. Уж в 30-км зоне отчуждения ЧАЭС, показали быструю динамику и концентрирование радионуклидов на береговой террасе и в донных отложениях реки. Была построена модель радиоемкости склоновой экосистемы и показана ее эвристичность. Можно считать, что анализ радиоемкости перспективен и в случае линейно организованных экосистем по типу склоновых. Модели позволяют оценивать и прогнозировать закономерности распределения радионуклидов и определять критическую биоту, которая может получать заметные дозовые нагрузки.
3.5.3. Исследование радиоемкости ландшафтов

Анализ поведения поллютантов в склоновых экосистемах, которые составляют основу практически любого наземного ландшафта, показал возможность описания распределения и перераспределения радионуклидов методами теории радиоемкости с использованием камерных моделей. Исследования показали, что скорость перемещения радионуклидов в ландшафте определяется в основном, несколькими характеристиками: крутизной склона (P_1), видом покрытия (P_2), плотностью насаждения в ландшафте (P_3), вертикальной (P_4) и горизонтальной (P_5) миграцией. Методом ранговой оценки была проведена оценка вероятностей влияния этих показателей ландшафта на перераспределение радионуклидов. Каждый из показателей оценивается в диапазоне значений от 0 до 1. В силу независимости этих показателей ландшафта, общая оценка вероятности миграции радионуклидов по элементам ландшафта определяется, как свернутая вероятность и рассчитывается по формуле:

$$ P = P_1 \cdot P_2 \cdot P_3 \cdot P_4 \cdot P_5. \quad (3.9) $$

Особенную проблему представляют реальные ландшафты, когда оценки параметров радиоемкости касаются больших территорий, где действуют системы факторов, которые влияют на перераспределение радионуклидов биотическими и абиотическими компонентами экосистем. Определены главные факторы влияния на параметры радиоемкости: крутизна склонов, вид растительного покрытия поверхности, скорость стока, тип почвы и т.п. Установлено, из натурных исследований процессов движения радионуклидов по склоновым системам и процессов эрозии почв при действии поверхностного стока, что интенсивность стока резко возрастает с величиной крутизны склона. По оценкам и литературным данным, при величине крутизны склона в 1-3° вероятность стока за год составляет 0,01-0,05 от запаса поллютанта на данной части склона, а при крутизне склона в 25-30° вероятность стока радионуклидов и других поллютантов приближается к 1 [9].

Используя технические возможности программного продукта ESRI ArcGIS, В.В. Родиным [3], была разработана модельно-аналитическая ГИС, что позволяет анализировать и проводить прогнозы миграции загрязняющих веществ в экосистемах. Математической основой данной ГИС является математическая модель миграции веществ-загрязнителей в экосистемах. Основными информационными составляющими данной модели являются физико-химические и биохимические характеристики веществ-загрязнителей, а также природные и антропогенные факторы среды. Анализ исходных данных позволяет нам выйти на определяющие блоки модели – показатели скоростей сброса и выноса загрязнителей в экосистемах.

В результате обработки исходных данных и их анализа в ArcGIS с использованием модулей Spatial Analyst и 3D Analyst, создаются аналитические карты, которые представляют собой индексированные растровые изображения, складывающиеся из пикселей заданного размера. Каждый из таких пикселей имеет определенное цифровое, индексное или логическое значение, которое он получает в результате выполнения расчётов по одному из возможных алгоритмов интерполяции данных исходных, растровых или векторных информационных ГИС-слоев.

Вследствие проведения ряда пространственно-математических расчётов с растровыми информационными слоями, мы можем получить набор необходимых растрово-индексных аналитических карт с показателями скоростей сброса, выноса и аккумуляции веществ-загрязнителей для каждого из пикселей, которые, имея заданную размерность, представляют собой элементарную пространственную единицу местности. Используя компонент „Растровый калькулятор“ из арсенала модуля Spatial Analyst, согласно принятой математической модели, задаем последовательность математических операций, которые будут реализовываться над индексными показателями аналитических карт, а также вводим слой с данными по загрязнению и количество циклов расчёта, которые имитируют временной промежуток (как правило в 1 год). В результате этих расчётов мы получаем новый индексный растровый слой с изображением прогнозированных показателей загрязнения территории, которые исследуются через заданный промежуток времени.

В результате могут быть получены оценочные и прогнозные карты для выбранного полигона (заказник “Лесники” в Конча-Заспе около Киева на берегу реки). На рисунке 3.4. показаны карты показателей радиоемкости ландшафта исходного полигона (справа) и структуры его рельефа (слева).
Используя параметры, которые влияют на перераспределение радионуклидов в ландшафте, построены карты (рис. 3.5.) исходного равномерного загрязнения ландшафта 137Cs (слева), и карта перераспределения радионуклидов исходя из параметров, через 10 лет после аварии (справа) (рис 3.5.). Видно, что ожидается заметное перераспределение поллютанта в исследованном ландшафте.

Этот процесс усиливается (рис. 3.6.) через 20 лет оценки (слева), а через 30 лет после аварии прогнозная карта (справа) показывает остро выраженное концентрирование радионуклидов в зонах понижения ландшафта (более темная красная краска).

Кроме оценочных и прогнозных карт (см. рис. 3.5. и 3.6.) разработана методика, которая дает возможность проводить реконструкцию процесса загрязнения территории, дозовых нагрузок, а также, по результатам точечных замеров, полученных в полевых условиях, реализовывать экстраляцию показателей загрязнения на весь район исследований и во временной динамике.
3.6. Контрмеры в радиоэкологии

Экологические нормативы и состояние загрязнения экосистем существенно зависят от использования разных контрмер. В условиях существования возможности радионуклидных выбросов и сбросов от ядерных предприятий и установок принято разрабатывать и применять специальные контрмеры для защиты населения и окружающей среды от попадания радионуклидов в ОС (окружающую среду) и влияния радионуклидного загрязнения. Контрмеры могут быть локального характера (в месте загрязнения) и общего (влияют на всю территорию, которая загрязнена радионуклидами).

3.6.1. Радиоэкологическая оценка эффективности контрмер

Всех случаях разработки, планирования и реализации контрмер, принято оценивать и прогнозировать их эффективность. Критериями для оценки эффективности контрмер является степень уменьшения средней индивидуальной дозы для персонала или населения и/или уменьшения коллективной дозы облучения. После оценки уменьшения индивидуальной и коллективной дозы вследствие определенной контрмеры, проводят расчет соотношения польза-вред. Рассчитывают стоимость применения определенной контрмеры и другие затраты, а также оценивают уменьшение (экономию) эквивалентной коллективной дозы облучения, которая достигается при этом. Зная стоимость 1 чел.-Зв (чел.-бэр), нетрудно рассчитать стоимость позитивного эффекта, которого можно достигнуть благодаря применению определенной контрмеры.

Сравнение стоимости достигнутого позитивного эффекта и стоимости вреда (то есть стоимость контрмеры и его последствий) дает возможность оценить разницу между ними. Такая оценка получила название настоящей (чистой) пользы. Если настоящая цена существенно превосходит вред вследствие определенной контрмеры, ее применение является радиоэкологически целесообразным. Если это расхождение небольшое или негативное, то использовать такую контрмеру в конкретных условиях нецелесообразно. Анализ всей системы контрмер дал возможность установить определенную общую закономерность, которая состоит в наличии предельного уровня дозы облучения, выше которого, применение контрмер целесообразно, а ниже - нецелесообразно.

3.6.2. Контрмеры в условиях радиационных аварий

В систему планирования вмешательств, в случаях радиационных аварий МКРЗ заложено три принципа:

1. Избегать возникновения значительных нестохастических эффектов влияния ионизирующего облучения на человека через применение мер по ограничению индивидуальной дозы к уровням, ниже предельных для возникновения этих (соматических) эффектов.

2. Ограничивать риск от стохастических (генетических) эффектов с помощью защитных мер, при которых достигается настоящая польза.

3. Ограничивать общую количество случаев стохастических эффектов, насколько это допустимо, путем уменьшения коллективной дозы облучения (видоизмененный принцип ALARA, один из основных принципов радиационной защиты: поглощенная доза облучения у людей должна быть настолько низкой, насколько это допустимо с учетом экономических и социальных факторов).

Для принятия решений по выбору контрмер в условиях радиационной аварии считаются целесообразным разделить течение аварии на временные этапы: ранний, промежуточный и восстановительный.

Ранний этап состоит из двух стадий:

1) от существования угрозы значительного выброса от ядерной установки до того момента, когда он происходит или устанавливается контроль над ядерной установкой (станцией);

2) в течение нескольких часов (от 1,5 часа и больше) от начала выброса радионуклидов. В случае аварии на ЧАЭС этот этап продолжался около 10 суток.

Для раннего этапа развития аварии характерно, что все контрмеры и решения по их использованию касаются управления ядерным предприятием. Сложность ситуации состоит в невозможности полного предвидения развития событий.

Аварийные планы и сценарии на этом раннем этапе предусматривают необходимые защитные меры и мониторинг среды вокруг ядерного предприятия.

Возможны два варианта облучения людей:

1) вследствие внешнего влияния облучения;

2) через вдыхание радионуклидов.

Это облучение касается практически только персонала предприятия.
Промежуточный этап аварии охватывает период от нескольких часов от начала аварии до нескольких суток, когда выброс уже произошел. Если выброс состоит не только из радиоактивных инертных газов, то вероятно выпадение радионуклидов. Возможно также продолжение не контролируемого выброса и сброса.

На этом этапе аварии могут наблюдаться три варианты (пути) облучения людей:
1) внешнее – от радионуклидов, которые выпали, и от факела (тучи);
2) внутреннее – от употребления воды и еды;
3) ингаляционное.

Аварийные планы и применение необходимых мер зависит от данных мониторинга. Проводят консультации с группой экспертов для определения необходимости контрмер по защите населения. Состав группы экспертов определяют заранее.

Восстановительный этап аварии – это период принятия решений и применения, необходимых мер по возвращению к нормальной жизни. Этот период может быть длительным (для аварии на ЧАЭС он продолжается и сейчас). На этом этапе завершают и прекращают меры защиты персонала и населения. Все решения по использованию контрмер и их характера принимают с учетом социальных, экономических и технических факторов. В таблице 3.5. систематизированы основные контрмеры для разных этапов развития аварий на ядерных предприятиях.

| Таблица 3.5. Контрмеры на разных этапах развития радиационной аварии |
|--------------------------|--------------------------|--------------------------|
| Контрмера | Этап развития радиационной аварии |
| | Ранний | Промежуточный | Восстановительный |
| Укрытие людей | + | + | - |
| Самая простейшая защита органов дыхания | - | - | - |
| Применение стабильного йода | + | + | - |
| Эвакуация населения | + | + | + |
| Переселение людей | - | + | - |

В табл. 3.6. приведены рекомендации МКРЗ о мерах по защите населения при разных путях влияния ионизирующего облучения.

<p>| Таблица 3.6. Основные меры защиты людей в зависимости от путей влияния ионизирующего облучения. |
|---------------------------------|---------------------------------|</p>
<table>
<thead>
<tr>
<th>Путь влияния</th>
<th>Меры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Внешний, радионуклиды в факеле выброса радионуклидов, которые выпали на территории (в том числе поверхностное загрязнение людей)</td>
<td>Укрытие, эвакуация, переселение людей, контроль доступа в районы загрязнения, санитарная обработки, дезактивация территории</td>
</tr>
<tr>
<td>Ингаляционный, вдыхание пара от факела выброса, вдыхание радионуклидов</td>
<td>Укрытие, эвакуация населения, защита органов дыхания, применение стабильного йода, контроль доступа в районы загрязнения, санитарная обработка, дезактивация территории</td>
</tr>
<tr>
<td>Попадание в организм из продуктов питания и с водой</td>
<td>Контроль пищевых продуктов и воды, использование заготовленных для животных кормов</td>
</tr>
</tbody>
</table>

Из таблиц 3.5. и 3.6. вытекает, что некоторые контрмеры целесообразно проводить только на отдельных этапах аварии, когда они эффективны. Каждая из упомянутых контрмер, направлена на разные пути влияния и формирования дозы облучения.
3.6.3. Принципы выбора контрмер

Определение необходимости применения той или иной контрмеры зависит от соотношения риск-ущерб для людей, которые ощутили влияние ионизирующего излучения. Социальный ущерб и риск, связанный с мерами защиты населения, должны быть меньше, чем риск отвращенной, благодаря этой контрмере эквивалентной дозы облучения. На основании расчётов устанавливают оперативные уровни вмешательства в зависимости от дозы облучения. Эти дозы рассчитывают заранее. Устанавливают верхний уровень дозы облучения, выше которой применение, определенной контрмеры считаются обязательными. Нижний уровень индивидуальной эквивалентной дозы облучения отвечает той дозе, ниже которой нецелесообразно использовать определенную контрмеру, потому что, как указывалось выше, ущерб будет превышать положительный эффект от ее применения. Верхний и нижний уровни, по которым определяют необходимость определенных контрмер, устанавливаются национальными нормативами. Если доза облучения находится в пределах этих уровней, выбор определенной контрмеры делается на основе экономических и технических возможностей страны, где происходит радиационная авария. В таблице 3.7. приведена рекомендованная МКРЗ система уровней доз для выбора контрмер, которые местные органы могут изменять и корректировать. Предельная эквивалентная доза облучения для человека, выше которой большинство контрмер является обязательными, составляет 0,5 Зв (50 бэр).

Рассмотрим характеристику некоторых контрмер.

1. Укрытие и самая простая защита органов дыхания:
- а) пребывание в помещении, которое уменьшает дозу внешнего облучения в 2-10 раз;
- б) закрытие окон, дверей и выключение системы вентиляции;
- в) дыхание через мокрую ткань, которая уменьшает ингаляционную дозу облучения до 10 раз.

2. Применение стабильного йода (таблетки калия йодида или йодата).

При поступлении 131I в организм его накопление в щитовидной железе достигает максимума через 1-2 сутки после выброса, причем 50 % этой дозы формируется за первые 6 часов. Поглощение 131I щитовидной железой прекращается обычно через 5 мин после применения 100 мг стабильного йода и продолжается около 30 мин, если человек поел. Самым эффективным является профилактическое введение йода до облучения (например, употребление еды с повышенным содержанием йода, йодированной соли, например). Применение стабильного йода через 6 часов после облучения снижает дозу в 2 раза, а через сутки является уже менее эффективным. Если выброс продолжается долго (несколько суток, как в случае аварии на ЧАЭС), то применение йодной профилактики целесообразно на протяжении всего этого периода. Риск от применения стабильного йода незначительный.

3. Эвакуация населения потребует рассмотрения детального плана, который охватывает:
- а) оценку объема и характера аварии;
- б) предварительную оценку количества людей, которые потребуют эвакуации;
- в) наличие путей эвакуации и приемных пунктов;
- г) оценку погодных условий.

Следует особенно подчеркнуть, что эвакуация на раннем этапе аварии эффективна, если она проводится до появления факела
и радиоактивной тучи. Эвакуация во время появления факела может только причинить вред, то есть привести к переобучению. Подобная ошибка наблюдалась во время эвакуации населения в г. Прияти, когда вызов людей автобусами проводился при факеловых выбросах, на дорогах около “рыжего” леса, то есть при наличии особенно высоких уровней внешнего облучения.

3.6.4. Сравнительный анализ контрмер, во время ликвидации аварии на ЧАЭС.
Контрмеры, реализованные в процессе ликвидации последствий аварии на ЧАЭС, условно делят на два класса: тактические и стратегические. Тактическими можно считать оперативные меры после аварийного периода, направлены на уменьшение индивидуальных доз облучения для персонала и населения. Стратегическими считаются контрмеры по уменьшению коллективных эквивалентных доз облучения для населения (табл. 3.8).

Стратегически важными среди многомасштабных реализованных контрмер для Киева, по нашим оценкам, являются:
1) оперативное создание системы водоочистки и резервных систем водоснабжения города;
2) вывоз детей школьного возраста на летние месяцы в мае - июне 1986 г.;
3) сбор и вывоз опавших листьев в 1986 г.

Определяя степень уменьшения ожидаемой коллективной эквивалентной дозы, благодаря применению систем водоочистки питьевой воды, исходя из усредненных оценок, по которым в первые три месяца после аварии на вход гидроочистных сооружений города поступала вода с объемной активностью около 3,7х10^5 Бк/л (10^5 Ки/л) и больше, а на специальных фильтрах она снизилась до 37 Бк/л (по основным радионуклидам).

Расчёты показали, что средняя индивидуальная эквивалентная доза облучения на одного жителя Киева без водоочистки составила около 0,035 зв, а благодаря специальной водоочистке она уменьшилась до 0,003 зв. Для 3-миллионного города, которым является г. Киев, снижение ожидаемой коллективной эквивалентной дозы составит 10^4 чел.-Зв (10^6 чел.-бр).
Уровень поверхностной активности опавшей листвь в г. Киеве в 1986 г. из-за воздушной составляющей радионуклидного загрязнения достиг 3,7х10^4 Бк/кг, или 10^6 Ки/кг (по основным радионуклидам). По нашим оценкам, опадение таких листвьев, превращения его в пыль или сжигание на кострах могло вследствие вторичного ветрового подъема сформировать дополнительную ингаляционную дозу около 0,007 Зв (0,7 бэр) на человека. Вывоз на захоронение более 200000 т листьев обусловило снижение коллективной эквивалентной дозы облучения для всего населения города приблизительно на 2,1·10^3 чел. - Зв (2,1·10^6 чел.-бр).

Суммарное уменьшение коллективной дозы облучения вследствие вывоза детей на летний период из Киева оценивают в 0,7·10^4 чел. - Зв (0,7·10^6 чел.-бр).

Таблица 3.8. Оценка уменьшения коллективной эквивалентной дозы облучения в Киеве вследствие использованных контрмер.

<table>
<thead>
<tr>
<th>Радионуклид (мк)</th>
<th>Уменьшение дозы в зависимости от использованной контрмеры</th>
<th>Водоочистка</th>
<th>Сбор и вывоз опавшей листвы</th>
<th>Вывоз детей</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>В течение первых трех месяцев после аварии</td>
<td>В течение 18 месяцев после аварии</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137Cs</td>
<td>0,7</td>
<td>0,02</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>90Sr</td>
<td>0,007</td>
<td>0,0002</td>
<td>0,000008</td>
<td>0,1</td>
</tr>
<tr>
<td>137Cs + 90Sr</td>
<td>0,28</td>
<td>0,000008</td>
<td>0,00021</td>
<td></td>
</tr>
<tr>
<td>Суммарное</td>
<td>10^6</td>
<td>2,1·10^6</td>
<td>0,7·10^6</td>
<td></td>
</tr>
</tbody>
</table>

*В таблице в числителе указана коллективная эквивалентная доза облучения, чел.-бр (1 чел.-бр = 0,01 чел.-Зв), в знаменателе – индивидуальная доза, бэр (1 бэр = 0,01 Зв).

В целом рассмотренные выше контрмеры, по нашим оценкам, обусловили уменьшение ожидаемой коллективной дозы облучения...
на 13.2x10⁴ чел.-Зв (13.2x10⁶ чел.бэр). Этот очень значительная степень уменьшения дозы отражает высокую эффективность использованных стратегических контрмер по защите больших групп населения. Следует заметить, что эффект снижения дозы был достигнут радиально: опавшая листва вывезена и захоронена; при водоочистке радиоактивность сконцентрирована на фильтрах, то есть также захоронена; дети были вывезены из Киева, вследствие чего часть дозы внешнего облучения на них вообще не воздействовала.

Хорошо известны и реализованные в Украине и Беларуси такие контрмеры для уменьшения дозовых нагрузок на население, как, например, глубокая вспашка загрязненных почв, их мелиорация и известкование (табл. 3.9.).

<table>
<thead>
<tr>
<th>Метод дезактивации</th>
<th>Коэффициент дезактивации по индивидуальной дозе</th>
<th>Коэффициент дезактивации по коллективной дозе</th>
<th>Время, годы</th>
<th>Влияние на фактор радиоемкости, (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Закрепление территории</td>
<td>1,2</td>
<td>1,2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Снятие дернины (turf-cutter)</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>0,9</td>
</tr>
<tr>
<td>Снятие поверхностного слоя почвы грейдером, бульдозером, скрепером</td>
<td>6-8</td>
<td>2</td>
<td>1</td>
<td>0,05</td>
</tr>
<tr>
<td>Глубокая вспашка</td>
<td>2 - 3</td>
<td>2-3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Специальные севообороты</td>
<td>3 - 5</td>
<td>4-5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Благодаря использованию данных контрмер наблюдалось (по нашим оценкам) уменьшение индивидуальных эквивалентных доз облучения, в среднем приблизительно в 2-3 раза. Эти контрмеры оказались достаточно эффективными для уменьшения индивидуальных дозовых нагрузок. Однако основная часть коллективной дозы в сельской местности формируются через поступление радионуклидов с едой. Если вследствие вспашки, мелиорации или внесения удобрений, поступление радионуклидов в продукты питания уменьшается, то практически это означает, что это же самое количество радионуклидов поступит в пищевой рацион человека не за 8-10 лет, а в течении 20-25 лет.

Понятно, что это количество радионуклидов ¹³⁷Cs и ⁹⁰Sr, так или иначе, поступит со временем в рацион питания, но большего количества людей и сформирует свою индивидуальную дозу. Уровень коллективной дозы при этом уменьшится только на 20-30% за счет радиоактивного распада. Таким образом, тактические контрмеры, которые достаточно эффективны по критерию снижения индивидуальных доз облучения, являются малоэффективными относительно снижения коллективной дозы. Этот пример иллюстрирует важные принципиальные отличия, как в эффективности стратегических и тактических контрмер, так и в методах их оценки.

Если для локальных радиационных аварий реализованную систему контрмер можно считать достаточно эффективной, то для сверхвысоких по последствиям аварий, таких как Кыштымская, Чернобыльская и авария на Фокусиме-1, оптимальные системы контрмер, еще должны быть разработаны и обоснованы.

Таким образом, при малых и средних индивидуальных эквивалентных дозах облучения (до 0,05 Зв на одного человека) в ситуации больших аварий эффективны и целесообразны стратегические контрмеры обще регионального характера и практически малоэффективны контрмеры тактического класса. Для сравнительной оценки эффективности и оптимизации выбора контрмер нужно учитывать их влияние на параметры экосистем. Важно знать, что остается после применения контрмер дезактивированная “пустыня” или жизнеопасная экосистема.

3.7. Проблема экологического нормирования в свете Чернобыльской аварии

Существующая у нас в стране и мире система гигиенического нормирования не решает проблему безопасности биоты экосистем, которая оказывается в зоне влияния радиационных аварий и выпадений. Как показал опыт оценки влияния радионуклидов на биоту в случаях Кыштымской и особенно Чернобыльской аварий, такие заметные влияния имеют место. Поэтому в 103 публикации
экосистемы, можно определить уделые значения радиоактивности по ^{137}Cs (в частности) в каждой из компонент биоты исследованной экосистемы. Используя данные о Ки (коэффициентах накопления) ^{137}Cs, моделях радиоемкости разных составляющих данной экосистемы и результатов камерной модели исследованной экосистемы, можно получить данные о динамике распределения и перераспределения радионуклида ^{137}Cs, в соответствии с системой тех дифференциальных уравнений, что представляют камерную модель. Чтобы практически использовать предложенный подход, мы сделан расчёт для склоновой экосистемы. Допустим, что начальный уровень поступления радионуклидов ^{137}Cs на верхний уровень экосистемы (прототип склона на берегу р. Уж) – лес, составляет 1 МБк. С помощью натурных данных и камерной модели исследованной экосистемы и моделей радиоемкости, проведем расчёты того какая часть радионуклидов и какая доза облучения биоты, и концентрация радионуклидов ^{137}Cs формируется в разных элементах экосистемы (см. таблицы 3.2.-3.3.). Установив уровни загрязнения биоты в разных камерах по модели Б. Амиро (таб. 3.2.), можно оценить дозовые нагрузки на биоту, исходя из общего уровня поступления радионуклидов ^{137}Cs в 1 МБк. Ясно, что эти дозы будут меньше в сравнении с принятой нами критической дозой в 4 Гр/год на биоту. Далее, решая пропорцию, могут быть определены границы поступления радионуклидов ^{137}Cs в камеру – Лес, при условии, что мощность дозы не превышает значения в 4 Гр/год. При этом показано, что наибольшие дозовые нагрузки ожидаются в биоте донных отложений озера. Из таблицы 3.3. вытекает, что в зависимости от Ки – донной биоты, уровне допустимого радионуклидного загрязнения (экологические нормативы на допустимые сбросы радионуклидов ^{137}Cs) в лесу заметно изменяются от значений в сотни Ки до единиц. Это означает, что: 1) критическая биота донных отложений может резко ограничить величину экологического норматива; 2) радионуклидовому загрязнению может подвергаться не только верхний участок экосистемы склона, но и другие камеры экосистемы склона, что расположены ниже. При этом жесткость экологического норматива на допустимые уровни сброса радионуклидов заметно возрастает при ситуации, когда радионуклидному загрязнению ^{137}Cs подвергаются нижние уровни экосистемы склона – луг, терраса. Чем ниже по склону происходит...
загрязнение экосистемы склона, тем меньше допустимый уровень поступления радионуклидов в исследованную экосистему склона.

Анализируя результаты расчётов, представленные в таблице 3.3., следует подчеркнуть, что в последних двух строках сделан перерачёс допустимых уровней сброса радионуклидов 137Cs в озеро, с помощью, описанной выше, пропорции. Таким образом, экологический норматив на допустимый уровень поступления 137Cs в первый год после аварии, при высоком реальном значении Кi донной биоты в 1000 единиц не должен превышать всего 2,3 Ки в ситуации разового сброса. В случае дополнительных сбросов радионуклидов в лес в дальнейшие годы после аварии, этот норматив будет оценен еще меньшей величиной. Идет речь о том, что высокие значения Ки донной биоты, критической для данной экосистемы склона, означают резко ограниченные уровни экологических нормативов на допустимые уровни сброса в участке склона, которые расположены ниже, допустимый экологический норматив на их загрязнение радионуклидами 137Cs, будет еще заметно ниже. При этом можно посчитать, что гигиенические нормативы на воду озера, как питьевую (2 Бк/л), при таких экологических нормативах, как правило, не будет превышен. Также можно показать, что уровни загрязнения травы на лугу, кормовых трав на террасе, при уровне поступления радионуклидов 137Cs в лес на уровне 2,3 Ки или 0,23 Ки, никогда не приведут к получению молока от коров, которые выпасаются на этом лугу, и в результате откорма коров кормовыми травами на террасе, к превышению гигиенического норматива (ДУ-2006) на загрязнение молока в 100 Бк/л. Именно это касается уровней загрязнения овощей от использования воды озера для их орошения, это также не приведет к превышению экологического норматива на загрязнение овощей радионуклидами 137Cs, в 60 Бк/кг. Таким образом, в данной реальной ситуации радионуклидного загрязнения экосистемы склона 137Cs, предложены экологические нормативы на допустимые уровни сброса и выброса радионуклидов заметно ниже, чем гигиенические нормативы, что действуют в данной экосистеме склона.

Следует напомнить, что современная экологическая парадигма, которая действует, состоит в том, что если экологическая ситуация в конкретной экосистеме благоприятна для человека, тогда экологическая ситуация для дикой биоты тем более будет благоприятна. Проведенный тут конкретный анализ по расчётом экологического норматива на допустимые уровни радионуклидного загрязнения 137Cs, для близкой к реальной, экосистемы склона показывает, что эта парадигма не всегда верна. Можно считать, что экологические нормативы на допустимые уровни загрязнения поллютантов реальных экосистем, могут быть более жесткими, чем человеческие гигиенические нормативы. Гигиенические нормативы относительно просты в разработке, потому, что они касаются только одного вида биоты — человека. При этом нормируются отдельные компоненты места существования — уровня загрязнения воздуха в зоне дыхания, питьевая вода и продукты питания. Таким образом, эти нормативы разрабатываются и рассчитываются одновременно и только изредка уточняются.

Нами показано, что разработка экологических нормативов на предельно-допустимые уровни сброса и выброса поллютантов в разные типы экосистем, а значит и обеспечения экологической безопасности, требуют специальных усилий и моделей. Сложность проблемы состоит в том, что даже для одной и той же экосистемы (например, экосистема склона) экологический норматив будет разным в зависимости от значений Кзд — биоты донных отложений в соответствии с распределением поллютантов по компонентам экосистемы и так далее. Сложность задания возрастает при анализе и расчёте экологических нормативов для разных типов экосистем, особенно объединенных в сложные ландшафтные экосистемы. Это может означать, что экологическое нормирование, если оно будет разработано, потребует значительных теоретических и экспериментальных усилий.

Анализ поведения поллютантов в экосистемах склонов, составляющих основу практически любого наземного ландшафта, показал возможность описания распределения и перераспределения радионуклидов методами теории радиоэкологии, с применением камерных моделей. Исследования показывают, что скорость переноса радионуклидов в ландшафте определяются, в основном, несколькими характеристиками: крупности склона (P_1), вид покрытия (P_2), расчлененность ландшафта (P_3), вертикальная (P_4) и горизонтальная миграция (P_5). Каждый из показателей оцениваются от 0 до 1. Из-за независимости показателей ландшафта, общая оценка вероятности миграции радионуклидов по элементам ландшафта определяются как свернутая вероятность и определяется по формуле $P = P_1 \times P_2 \times P_3 \times P_4$. 201

202
х Р. Особенную проблему представляют реальные ландшафты, когда оценки параметров радиоемкости относятся к большим территориям, где действуют системы факторов радионуклидов, которые влияют на перераспределение, по биотическим и абиотическим компонентам экосистем. Известно из натурных исследований по процессам движения радиоактивных веществ по склонам, и за процессами эрозии грунтов при действии поверхностного стока, что интенсивность стока резко растет с крутизной склона.

Используя технические возможности программного продукта ESRI ARCGIS, была разработана модельно-аналитическая ГИС (геоинформационная система), которая позволяет анализировать и проводить прогнозы миграции загрязняющих веществ в экосистемах. Математической основой данной ГИС является разработанная нами математическая модель миграции веществ-загрязнителей в экосистемах. Основными информационными составляющими данной модели являются физико-химические и биохимические характеристики веществ-загрязнителей, а также природные и антропогенные условия окружающей среды. Анализ исходных данных позволяет нам выйти на ключевые блоки нашей модели – показатели скоростей поступления и выноса загрязнителей в экосистемах.

В результате нами получены оценочные и прогнозные карты для выбранного полигона – заказник «Лесники» в Конче-Заспе около Киева, на берегу реки. Полученные карты ландшафта исходного полигона и структуры его рельефа. Используя параметры, которые определяют перераспределение радионуклидов в ландшафте, нами построены карты исходного равномерного загрязнения ландшафта Cs-137, и карта перераспределения радионуклидов через 10 лет после аварии. Установлено, что ожидается заметное перераспределение поллютанта в исследованном ландшафте. Этот процесс усиливается через 20 лет оценки, а через 30 лет после аварии прогнозная карта показывает неизменную концентрацию радионуклидов в зонах пониженной ландшафта (контроль в болоте) рис. 3.4.-3.6.

Кроме оценочных и прогнозных карт, разработанная нами методика дает возможность проводить реконструкцию процесса загрязнения территории, а также, по результатам точечных измерений, полученных в полевых условиях, осуществлять экстраполяцию показателей загрязнений на весь район исследований, а также экологические нормативы для ландшафтов.

3.8. Экологическое нормирование радиационного фактора. Проблемы и перспективы

Существующая в мире система гигиенического нормирования не решает проблему безопасности биоты экосистем, которая оказывается в зоне влияния радиационных аварий и выпадений. Как показал опыт оценки влияния радионуклидов на биоту в случаях Кыштымской и Чернобыльской аварий, такие заметные влияния имеют место. Поэтому в 103 публикации МКРЗ, наконец-то была поставлена проблема создания специальной системы экологического нормирования. МКРЗ предлагает путь выбора особо чувствительных видов в экосистеме, а по их реакции уже можно судить о превышении или не превышении допустимых уровней загрязнения биоты экосистем. На наш взгляд, разработка системы экологических нормативов на допустимые сбросы и выбросы поллютантов в биоту системе требует особого подхода и создания специальных моделей. В существующей системе гигиенического нормирования действуют относительно простые подходы и модели оценки допустимых уровней загрязнения воздуха, воды и продуктов питания. Достаточно наладить их контроль и выполнение гигиенических нормативов может быть обеспечено. Задача установления экологических нормативов на допустимые уровни загрязнения биоты намного сложнее.

Для того чтобы ограничить дозу воздействия на биоту в структуре экосистемы необходимо установить динамику и закономерности распределения и перераспределения поллютантов по компонентам конкретных экосистем для определения критического звена биоты, где следует ожидать депонирования наибольшего количества поллютантов и/или наивысшего уровня дозы воздействия, и где могут быть наибольшие негативные эффекты влияния на биоту. А это вовсе не обязательно будут, выбранные заранее, наиболее чувствительные реперные виды организмов. Конечно на начальных этапах аварии, отдельные высокочувствительные виды, могут реагировать на относительно высокие дозы облучения, но не обязательно, что именно эти виды будут определять судьбу биоты всей экосистемы. В конечном итоге, выживание биоты любой экосистемы определяется ее способностью сохранить биомассу, достаточную для воспроизводства данной экосистемы и поддержания свойства кондиционирования среды обитания, жизнеспособной для этой биоты. Поэтому мы полагаем,
что для биоты экосистем, где происходят реальные процессы распределения и перераспределения радионуклидов, попавших в нее, в системе экологического нормирования должно использовать третий вариант определения критических составляющих биоты и уже по ним проводить нормирование радиационного фактора.

Следует обсудить этот подход на конкретных примерах и моделях. Рассмотрим проблему экологического нормирования для такого распространенного после аварии на ЧАЭС поллютанта, как 137Cs. По системе зонирования дозовых нагрузок на биоту экосистем (см. табл. 3.1). То есть заметных экологических реакций можно ожидать при мощностях дозы приблизительно 0,4 Гр/год для животных и 4 Гр/год для растений и гидробионтов. Предлагается этому уровню мощности дозы поставить в соответствие экологический норматив на допустимые уровни загрязнения биоты 137Cs, когда экологический риск может составить единицу. Речь может идти о том, что при таких дозах возможно угнетение и подавление роста биомассы биоты в экосистеме и заметное ухудшение кондиционирующей функции, то есть способности биоты (редуцентов, в первую очередь) к очистке и самоочистке среды обитания. По дозиметрической модели для дикой биоты, разработанной Б.Амиро, эта доза соответствует содержанию в биоте 137Cs, с удельной радиоактивностью, примерно, в 600 кБк/кг биомассы.

Это достаточ но высокий уровень радиоактивного загрязнения биоты экосистемы, при котором может наблюдаться угнетение и гибель биоты, то есть уменьшиться биомасса биоты и ее способность кондиционировать среду обитания. Именно эти свойства биоты в первую очередь определяют жизнеспособность всей экосистемы. Используем для оценки экологических нормативов на допустимые уровни загрязнения биоты экосистемы 137Cs, метод камерных моделей. Для примера напомним относительно простую, изученную нами, склоновую экосистему в виде-9 камер: на вершине склона – Лес – далее опушка леса – каменистый участок – луг – сельскохозяйственная терраса – вода озера – донные отложения озера – биота водной толщи – биота донных отложений (см. рис. 2.33.).

Используя натурные данные и результаты расчетов по разработанным нами моделям радиоемкости [3] данной экосистемы, можно определить удельные значения радиоактивности по 137Cs в каждой из компонент биоты исследуемой экосистемы. Используя данные о Кн (коэффициентах накопления) 137Cs, моделей радиоемкости разных составляющих данной экосистемы и результатов камерной модели исследуемой экосистемы, можно получить данные о динамике распределения и перераспределения радионуклида 137Cs, в соответствии с системой дифференциальных уравнений представляющих камерную модель. Выше приведены, проведенные нами расчеты (таблицы 3.2.-3.4.).

Известно, что современная действующая экологическая парадигма состоит в том, что если экологическая ситуация в конкретной экосистеме благоприятна для человека, то экологическая ситуация для дикой биоты тем более будет благоприятна. Проведенный в данной главе конкретный анализ по расчету экологического норматива на допустимые уровни радионуклидного загрязнения 137Cs, для близкой к реальной, склоновой экосистеме показывает, что эта парадигма чаще не верна. Можно полагать, что экологические нормативы на допустимые уровни загрязнения поллютантом реальной экосистем, могут быть более жесткими, чем человеческие гигиенические нормативы. Гигиенические нормативы относительно просты в разработке, потому, что они касаются только одного вида биоты – человека. При этом нормируются отдельные компоненты среды обитания – уровни загрязнения воздуха в зоне дыхания, питьевая вода и продукты питания. Таким образом, эти нормативы делаются и рассчитываются одноразово и только изредка уточняются.

Показано, что разработка экологических нормативов на предельно–допустимые уровни сброса и выброса поллютантов в разные типы экосистем, а значит и обеспечение экологической безопасности, требуют специальных усилий и моделей. Сложность проблемы состоит в том, что даже для одной и той же экосистемы (например, склоновая экосистема) экологический норматив будет разным в зависимости от значений Кн – биоты донных отложений в зависимости от распределения поллютантов по компонентам экосистемы и т.д. Сложность задачи возрастает при анализе и расчете экологических нормативов для разных типов экосистем, особенно объединенных в сложные составные ландшафтные экосистемы. Это может означать, что экологическое нормирование, коль скоро оно будет разработано, потребует значительных теоретических и экспериментальных усилий.
В общем виде алгоритм разработки экологических нормативов должен состоять из следующих основных шагов:

1. Оценка спектра и объема загрязнения реальной экосистемы. Ясно, что для каждого из поллютантов и разных объемов загрязнения расчет нужно проводить раздельно.

2. Оценка структуры экосистемы ландшафта, попавшего под загрязнение поллютантов. Определение типов экосистем, состоящих данный ландшафт.

3. Моделирование всех имеющихся типов экосистем методами камерных моделей и моделей экологической емкости и радиоемкости с целью определения критических, по накоплению поллютантов, составляющих биоты экосистем и оценки дозовых нагрузок на них.

4. Составление комбинации моделей экосистем, образующих исследуемый загрязненный ландшафт, для установления определяющей критической биоты в этом ландшафте, где могут формироваться наибольшие критические дозы и условий влияния на биоту.

5. С помощью аналитической геоинформационной системы (ГИС технологии) провести моделирование экологической емкости и радиоемкости реального исследуемого ландшафта для определения мест наибольшего депонирования поллютантов и максимальных эффектов воздействия поллютантов на биоту в данном ландшафте.

6. Установив критическое место депонирования поллютантов и критическую биоту в ландшафте, можно рассчитать экологический норматив для каждого из поллютантов в данном реальном ландшафте, превышение которого способно привести к необратимым последствиям для биоты и изменить характеристики ландшафта.

Ясно, что для различных поллютантов будут оценены свои экологические нормативы на допустимые уровни их выброса и выброса в реальный исследуемый ландшафт. При комбинированном воздействии нескольких поллютантов – П (число- i и с уровнями воздействия Пi), потребуется установить экологические нормативы для каждого из них - ЭНi. Условие не превышения общего экологического норматива для всего ландшафта в целом будет выполнено, если выполняется неравенство, когда сумма таких дробей будет:

$$\Sigma \frac{P_i}{EN_i} \leq 1$$ (3.10)

меньше единицы. При этом следует подчеркнуть, что по отношению к разным поллютантом, ЭНi, могут быть различными и относиться к разным критическим составляющим биоты. При изменении площади загрязнения и/или спектра поллютантов, потребуется новый анализ и расчет по выше приведенному алгоритму. Очевидно, что единого экологического норматива на допустимые уровни выброса и выброса, разных поллютантов в различные ландшафты практически быть не может.

Реально для каждого участка (или радиационного объекта (АЭС, например) и/или другого производства, расположенного в конкретном ландшафте, потребуется специальный анализ, моделирование и расчет экологических нормативов на допустимые уровни выброса и выброса поллютантов в окружающую среду. При этом расчет экологических нормативов должен быть произведен для нормального режима эксплуатации опасного объекта и, особенно, аварийных режимов работы. Необходимый элемент расчета, это оценка экологических нормативов для ситуации проектных и запроектных аварий. Только выполнение таких экологических нормативов (формула 3.10) на допустимые выбросы и выбросы поллютантов с обязательным включением подобных расчетов и анализа в ОВОС (оценка влияния на окружающую среду) позволит защитить персонал, население и биоту от опасных воздействий реального объекта. Ясно, что выполнения одних действующих гигиенических нормативов на загрязнение воздуха, питьевой воды и продуктов питания, будет недостаточно. Как показали наши исследования выполнение гигиенических нормативов, недостаточно для обеспечения экологической безопасности влияния различных опасных объектов на ОС. Только одновременное выполнение гигиенических и экологических нормативов на допустимые уровни выброса и выброса поллютантов в ОС может обеспечить экологическую безопасность персонала, населения и биоты ОС.

3.9. Сравнение систем экологического нормирования по референтным видам биоты и по биоте с максимальным депонированием радионуклидов

Для подобного сравнения используем, описанную нами выше склоновую экосистему (см. рис 2.33.). Поместим в эту экосистему

Допустим, что лес в данной склоновой экосистеме загрязнен радионуклидами цезия -137 на экстремальном уровне в 200 Ки/км².

Рассмотрим оценки дозовых нагрузок на некоторые виды биоты, которые предлагается использовать в качестве референтных.

Проведем расчет дозовых нагрузок на выбранные виды биоты в рассматриваемой склоновой экосистеме. Для расчетов, используем наши оценки надежности транспорта радионуклидов на основе разработанных камерных моделей (м. таб. 2.1. и таб. 2.5.). Используя далее модель расчета дозовых нагрузок Б.Амиро (см. таб. 3.2.) можно оценить конкретно дозовые нагрузки на все выбранные для анализа референтные виды биоты.

Расчет показал, что возможно установить такие дозовые нагрузки и сравнить их с критическим дозами, определенными нами выше. (таблица 3.10).

В таблице 3.10. приведены данные расчетов дозовых нагрузок на биоту референтных видов. Расчеты по модели Б.Амиро, показали, что сосна не получает критических доз, превышающих предельные 4 Гр/год. Доза на оленей несколько превышает критическую - 0,9 Гр/год больше 0,4 Гр/год. Однако неизвестно превышает критическую. Доза для людей, использующих продукты питания и воду с данной склоновой экосистемы, не превышает 1 мЗв/год. Это совместно не критично. Доза на лягушек в озере составляет 0,2 Гр/год, что меньше 0,4 Гр/год и тем самым не определяет критичность экологической ситуации. И вода доза на бентосные организмы как, минимум составляет 16 Гр/год, что намного превышает критическую дозу в 4 Гр/год. Это грозит отмиранием биоты бентоса, а значит и серьезными экологическими последствиями для всей экосистемы.

Очевидно, что в данной экосистеме экологическое нормирование следует проводить именно по критической биоте, получющей самые высокие дозовые нагрузки и определяющей благополучие экосистемы в целом.

Таблица 3.10. Дозовые нагрузки на отдельные референтные виды биоты в типовой склоновой экосистеме, системы транспорта Cs-137 к озеру и к человеку (параметры озера: S=1 км², h=5 м, V=5E+9 км³/год, донные отложения (S=1 км², h = 0, 1м, Kn=1000). считаются, что в лесу лежит запас 200 Ки/км² по 137Cs.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Популяция</th>
<th>Дозовые оценки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лес</td>
<td>0,29</td>
<td>Доза на растение 1,5 Гр/год, вегетативная-0,6 Гр, от почвы -0,15 Гр, все вместе 4 Гр/год</td>
</tr>
<tr>
<td>Луг</td>
<td>0,77</td>
<td>Доза на растение 1,5 Гр/год, вегетативная-0,6 Гр, от почвы -0,15 Гр, все вместе 4 Гр/год</td>
</tr>
<tr>
<td>Терраса</td>
<td>0,4</td>
<td>Доза на растение 1,5 Гр/год, вегетативная-0,6 Гр, от почвы -0,15 Гр, все вместе 4 Гр/год</td>
</tr>
<tr>
<td>Пойма</td>
<td>0,2</td>
<td>Доза на растение 1,5 Гр/год, вегетативная-0,6 Гр, от почвы -0,15 Гр, все вместе 4 Гр/год</td>
</tr>
<tr>
<td>Озеро</td>
<td>0,33</td>
<td>Доза на растение 1,5 Гр/год, вегетативная-0,6 Гр, от почвы -0,15 Гр, все вместе 4 Гр/год</td>
</tr>
<tr>
<td>Донные отложения</td>
<td>0,1</td>
<td>Доза на растение 1,5 Гр/год, вегетативная-0,6 Гр, от почвы -0,15 Гр, все вместе 4 Гр/год</td>
</tr>
<tr>
<td>Люди</td>
<td>0,4 + 0,1</td>
<td>Доза на растение 1,5 Гр/год, вегетативная-0,6 Гр, от почвы -0,15 Гр, все вместе 4 Гр/год</td>
</tr>
</tbody>
</table>

Использование для экологического нормирования референтных видов, вероятно можно использовать для грубых оценок, а для контроля благополучия биоты экосистем целесообразно использовать оценки дозовых нагрузок на критическую биоту, где в динамике
накопления радионуклидов, происходит наибольшее депонирование поллютантов. А для каждого типа экосистем, такая биота определяется через моделирование. Для реки и озера - это бентос, для моря — это биота в пелагиали, в лесу — биота лесной подстилки и далее через ландшафт, возможно, биота озера или болота и т.д. Заранее выбрать референтные виды и по ним определить критичность загрязнения всей экосистемы, практически невозможно.

Литература

3. Кутлахмедов Ю.А., Матвеева И.Б., Родина В.В. Надежность экологических систем. Теория, модели и практические результаты. Palamarium academic publishing. Saarbrucken. 2013, 317 c/

ЧАСТЬ 4.
ТЕОРЕТИЧЕСКАЯ РАДИОЭКОЛОГИЯ
АГРОЭКОСИСТЕМ

4.1. Исследование и оценка надежности систем транспорта радионуклидов в локальной агроэкосистеме

Полученные нами ранее результаты по оценке распределения и перераспределения радионуклидов в агроэкосистеме (на примере с. Галузя, Вольнской области) показали заметную динамику формирования дозовых нагрузок. Для оценки и прогноза таких процессов нами предложено использовать модели и теорию надежности. Для этого агроэкосистема рассматривается, как система транспорта радионуклидов от почвы к человеку. Предложены количественные методы оценки надежности отдельных элементов агроэкосистемы и экосистемы в целом. Данный метод и модели позволили по-новому взглянуть на проблему экологической безопасности человека и рассмотреть проблемы применения защитных контрмер.

Исследование радиологических процессов в агроэкосистемах особенно важно для оценки и прогноза их экологической безопасности для населения, особенно при формировании дозовых нагрузок. Кроме использованного нами ранее метода камерных моделей, считаем целесообразным разработать подходы к более общей оценке надежности и устойчивости агроэкосистемы. Речь идет об анализе агроэкосистемы, как системы транспорта радионуклидов от почвы к человеку, средствах и методах модификации данных процессов.

4.1.1. Анализ проведенных исследований

В течение длительных экспедиций (1991-1997 гг.) нами были собраны многочисленные сведения по конкретным оценкам содержания радионуклидов в разных компонентах агроэкосистем с. Галузя Маневического района Вольнской области. Позже были произведены расчеты по скоростям миграции, распределения и перераспределения радионуклидов 137Cs в компонентах агроэкосистемы. Этот регион является чисто целинной провинцией и заметного количества других радионуклидов здесь не обнаружено [1]. Эти данные позволили нам сделать оценки формирования...
дозовых нагрузок на разные группы населения. Моделирование потоков радионуклидов 137Cs методами камерных моделей [1; 2] позволило оценить вклад разных составляющих агроэкосистемы в формирование дозовых нагрузок на население.

Для дальнейшего развития теоретических радиоэкологических исследований важно разработать и другие подходы к радиоэкологическому моделированию. Нами разработаны подходы к рассмотрению агроэкосистем с помощью теории и моделей надежности экосистем [3].

Цель данного раздела книги: применить эффективный анализ к агроэкосистеме, как системе транспорта радионуклидов от окружающей среды к человеку, используя теорию и модели надежности. Реализация данной задачи позволит расширить круг средств теоретической радиоэкологии и может существенно дополнить метод камерных моделей.

Разработанные нами модели и теория радиоемкости экосистем позволили ввести адекватный параметр – фактор радиоемкости – для определения состояния биоты экосистемы [3].

Радиоемкость – предел радионуклидного загрязнения биоты экосистемы, при котором не наблюдаются серьезные изменения её функционирования. При превышении данного параметра могут наблюдаться угнетение и/или подавление роста биоты. Фактор радиоемкости определен как доля радионуклидного загрязнения, способного накапливаться в той или иной части/компоненте экосистемы, без разрушения ее структуры. Экспериментальными и теоретическими исследованиями нами установлено, что чем выше параметр радиоемкости биоты в экосистеме, тем выше уровень благополучия и надежности биоты в ней. В частности, в исследованиях с растительными экосистемами показано, что способность биоты накапливать и удерживать радионуклидный трассер 137Cs, аналог минерального элемента питания растений – калия, отображает устойчивость и надежность биоты данной экосистемы. Установлено, что снижение показателя радиоемкости биоты в растительной экосистеме при воздействии химических поллютантов и при гамма-облучении растений, четко отображает снижение благополучия биоты и надежности экосистемы.

Таким образом, утверждать, что параметр радиоемкости способен выступать в качестве меры надежности каждого элемента экосистемы, а также экосистемы в целом. Чем выше фактор радиоемкости, и/или вероятность удержания трассера в каждом из элементов экосистемы, тем выше надежность составных элементов экосистемы, как системы транспорта радионуклидов от ОС к человеку. Используя эти параметры надежности элементов экосистемы, и зная структуру конкретной экосистемы, мы имеем возможность адекватно оценивать надежность всей экосистемы через ее способность обеспечивать распределение и перераспределение трассера, что отображает ее устойчивое состояние [3].

Исходя из проведенных теоретических исследований, можно полагать, что, используя параметры скоростей обмена радионуклидами между камерами (a_{ij} и a_{ji}), можно оценивать надежность компонента экосистемы, как элемента системы транспорта радионуклидов по камерам по формуле:

$$P_i = \frac{\Sigma a_{ij}}{\Sigma a_{ij} + \Sigma a_{ji}},$$

где P_i – надежность i-того элемента экосистемы, Σa_{ij} – сумма скоростей перехода радионуклидов в камеру $-i$ из соприженных с ней камер $-j$, Σa_{ji} – сумма скоростей перехода радионуклидов из камеры $-j$ в соприженные с ней камеры $-j$ в которые радионуклиды поступают из данной камеры, надежность которой мы оцениваем через P_j.

Таким образом, мы оцениваем надежность i-того элемента экосистемы по его способности удерживать, попадающие в него радионуклиды. Далее, зная структуру обеспечения надежности транспорта радионуклидов от компонентов экосистемы к человеку, на основе теории надежности можно оценить надежность всей системы транспорта радионуклидов к человеку.

4.2. Моделирование агроэкосистемы методами теории надежности

Применяя разработанный подход к оценке надежности транспорта радионуклидов в агроэкосистеме с. Галузия [1; 2], основные блоки транспорта радионуклидов в исследуемой агроэкосистеме, представлены на рис. 4.1.

Нами установлено, что основными дозобразующими компонентами данной агроэкосистемы, являются 4 основные пастибища. Эти пастибища функционируют как параллельная система «доставки» радионуклидов к человеку. Согласно теории надежности
популяции населения образует строго последовательную систему: почва - трава - корова - молоко - мясо - люди. Надежность такой последовательной экосистемы может быть представлена в виде произведения параметров надежности составляющих транспортный поток радионуклидов-блоков. Оценки надежности каждого из блоков может быть рассчитана с помощью формулы (4.1).

На основе экспедиционных исследований, по результатам наблюдений и расчетов нами получены оценки скоростей перехода между камерами исследуемой агроэкосистемы (табл. 4.1.).

Представленные в таблице 4.1 данные позволяют провести оценку надежности компонентов экосистемы по предложенной нами формуле (4.1) и, зная последовательный характер связи отдельных компонентов агроэкосистемы с популяцией населения, провести оценку надежности данной агроэкосистемы, как системы
Таблица 4.1. Параметры скоростей перехода для разных составляющих агроэкосистемы с. Галузя

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Минимальное значение</th>
<th>Среднее значение</th>
<th>Максимальное значение</th>
<th>Описание перехода</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пастбище 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_{12})</td>
<td>0,02</td>
<td>0,06</td>
<td>0,1</td>
<td>почва - растения на пастбище</td>
</tr>
<tr>
<td>(a_{23})</td>
<td>0,18</td>
<td>0,38</td>
<td>0,58</td>
<td>трава - корова</td>
</tr>
<tr>
<td>(a_{34})</td>
<td>0,08</td>
<td>0,13</td>
<td>0,18</td>
<td>корова - молоко</td>
</tr>
<tr>
<td>(a_{35})</td>
<td>0,32</td>
<td>0,52</td>
<td>0,72</td>
<td>корова - мясо</td>
</tr>
<tr>
<td>(a_{36})</td>
<td>0,6</td>
<td>0,36</td>
<td>0,1</td>
<td>корова - отходы</td>
</tr>
<tr>
<td>(a_{47})</td>
<td>0,2</td>
<td>0,22</td>
<td>0,36</td>
<td>молоко - дети</td>
</tr>
<tr>
<td>(a_{48})</td>
<td>0,1</td>
<td>0,15</td>
<td>0,2</td>
<td>молоко - пенсионеры</td>
</tr>
<tr>
<td>(a_{49})</td>
<td>0,3</td>
<td>0,47</td>
<td>0,47</td>
<td>молоко - рабочие</td>
</tr>
<tr>
<td>(a_{50})</td>
<td>0,5</td>
<td>0,1</td>
<td>0,0</td>
<td>молоко - вывоз</td>
</tr>
<tr>
<td>(a_{51})</td>
<td>0,00</td>
<td>0,005</td>
<td>0,009</td>
<td>мясо - дети</td>
</tr>
<tr>
<td>(a_{52})</td>
<td>0,001</td>
<td>0,004</td>
<td>0,007</td>
<td>мясо - пенсионеры</td>
</tr>
<tr>
<td>(a_{53})</td>
<td>0,008</td>
<td>0,013</td>
<td>0,018</td>
<td>мясо - рабочие</td>
</tr>
<tr>
<td>(a_{54})</td>
<td>0,58</td>
<td>0,978</td>
<td>0,98</td>
<td>мясо - вывоз</td>
</tr>
<tr>
<td>Пастбище 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b_{12})</td>
<td>0,02</td>
<td>0,05</td>
<td>0,08</td>
<td>почва - растения на пастбище</td>
</tr>
<tr>
<td>(b_{23})</td>
<td>0,2</td>
<td>0,3</td>
<td>0,4</td>
<td>трава - корова</td>
</tr>
<tr>
<td>(b_{34})</td>
<td>0,04</td>
<td>0,12</td>
<td>0,2</td>
<td>корова - молоко</td>
</tr>
<tr>
<td>(b_{35})</td>
<td>0,16</td>
<td>0,48</td>
<td>0,8</td>
<td>корова - мясо</td>
</tr>
<tr>
<td>(b_{36})</td>
<td>0,8</td>
<td>0,4</td>
<td>0,2</td>
<td>корова - отходы</td>
</tr>
<tr>
<td>(b_{47})</td>
<td>0,14</td>
<td>0,24</td>
<td>0,34</td>
<td>молоко - дети</td>
</tr>
<tr>
<td>(b_{48})</td>
<td>0,04</td>
<td>0,12</td>
<td>0,2</td>
<td>молоко - пенсионеры</td>
</tr>
<tr>
<td>(b_{49})</td>
<td>0,24</td>
<td>0,37</td>
<td>0,5</td>
<td>молоко - рабочие</td>
</tr>
<tr>
<td>(b_{50})</td>
<td>0,54</td>
<td>0,27</td>
<td>0,0</td>
<td>молоко на вывоз</td>
</tr>
<tr>
<td>(b_{51})</td>
<td>0,001</td>
<td>0,003</td>
<td>0,005</td>
<td>мясо - дети</td>
</tr>
<tr>
<td>(b_{52})</td>
<td>0,00</td>
<td>0,004</td>
<td>0,008</td>
<td>мясо - пенсионеры</td>
</tr>
<tr>
<td>(b_{53})</td>
<td>0,03</td>
<td>0,06</td>
<td>0,09</td>
<td>мясо - рабочие</td>
</tr>
<tr>
<td>(b_{54})</td>
<td>1,0</td>
<td>0,98</td>
<td>0,5</td>
<td>мясо - вывоз</td>
</tr>
<tr>
<td>Лес</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{12})</td>
<td>0,00007</td>
<td>0,00034</td>
<td>0,0006</td>
<td>почва в лесу - древесина</td>
</tr>
<tr>
<td>(l_{13})</td>
<td>0,003</td>
<td>0,009</td>
<td>0,015</td>
<td>почва в лесу - ягоды</td>
</tr>
<tr>
<td>(l_{14})</td>
<td>0,01</td>
<td>0,02</td>
<td>0,03</td>
<td>почва в лесу - грибы</td>
</tr>
<tr>
<td>(l_{15})</td>
<td>0,02</td>
<td>0,07</td>
<td>0,12</td>
<td>лесные ягоды - дети</td>
</tr>
<tr>
<td>(l_{16})</td>
<td>0,01</td>
<td>0,05</td>
<td>0,09</td>
<td>лесные грибы - дети</td>
</tr>
<tr>
<td>(l_{17})</td>
<td>0,1</td>
<td>0,25</td>
<td>0,4</td>
<td>древесина - пенсионеры</td>
</tr>
<tr>
<td>(l_{18})</td>
<td>0,6</td>
<td>0,75</td>
<td>0,9</td>
<td>древесина - рабочие</td>
</tr>
<tr>
<td>(l_{19})</td>
<td>0,1</td>
<td>0,2</td>
<td>0,3</td>
<td>ягоды - дети</td>
</tr>
<tr>
<td>(l_{20})</td>
<td>0,7</td>
<td>0,8</td>
<td>0,9</td>
<td>ягоды - пенсионеры</td>
</tr>
<tr>
<td>(l_{21})</td>
<td>0,05</td>
<td>0,1</td>
<td>0,15</td>
<td>грибы - пенсионеры</td>
</tr>
<tr>
<td>(l_{22})</td>
<td>0,01</td>
<td>0,015</td>
<td>0,02</td>
<td>грибы - рабочие</td>
</tr>
<tr>
<td>Огород</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_{12})</td>
<td>0,005</td>
<td>0,01</td>
<td>0,015</td>
<td>продукция огорода - дети</td>
</tr>
</tbody>
</table>

217
Транспорт радионуклидов от пастбищ к населению. Для простоты ограничимся расчетом надежности исследуемой агроэкосистемы при средних значениях параметров скоростей (табл. 4.1) агроэкосистемы с. Галузия. Результаты расчетов представлены в таблице 4.2.

Показанный здесь подход может быть применен для оценки эффективности различного типа контрмер.

Таблица 4.2. Оценка надежности агроэкосистем без участия возможных контрмер и эффективности применения различных контрмер в агроэкосистеме (на примере с. Галузия) путем оценки надежности доставки радионуклидов Cs137 от 4-х основных пастбищ (при средних скоростях перехода радионуклидов между камерами модели).

<table>
<thead>
<tr>
<th>Контрмера</th>
<th>Kд (1)</th>
<th>Многолетняя</th>
<th>Оценка</th>
<th>Оценка</th>
<th>Оценка</th>
<th>Оценка</th>
<th>Оценка</th>
<th>Оценка</th>
<th>Оценка</th>
<th>Оценка</th>
<th>Кд (2)</th>
<th>Кд (3)</th>
<th>Kд (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Не применялась</td>
<td>1</td>
<td>0,0056</td>
<td>0,03</td>
<td>0,022</td>
<td>0,052</td>
<td>0,0008</td>
<td>0,0022</td>
<td>1,6 (чел. зв) Kд=1</td>
<td>1</td>
<td>0,0006</td>
<td>0,014</td>
<td>0,013</td>
<td>0,027</td>
</tr>
<tr>
<td>Уборка</td>
<td>2</td>
<td>0,0169</td>
<td>0,025</td>
<td>0,019</td>
<td>0,044</td>
<td>0,0007</td>
<td>0,0013</td>
<td>0,96 (чел. зв) Kд=1</td>
<td>1</td>
<td>0,0169</td>
<td>0,0252</td>
<td>0,0174</td>
<td>0,0426</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,0003</td>
<td>0,029</td>
<td>0,027</td>
<td>0,056</td>
<td>0,0004</td>
<td>0,0013</td>
<td>0,96 (чел. зв) Kд=1</td>
<td></td>
<td>0,0003</td>
<td>0,026</td>
<td>0,024</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,0011</td>
<td>0,041</td>
<td>0,033</td>
<td>0,074</td>
<td>0,0008</td>
<td>0,0022</td>
<td>1,6 (чел. зв) Kд=1</td>
<td></td>
<td>0,0011</td>
<td>0,0416</td>
<td>0,0293</td>
<td>0,0709</td>
</tr>
<tr>
<td>Севок</td>
<td>3</td>
<td>0,0056</td>
<td>0,0106</td>
<td>0,0079</td>
<td>0,0185</td>
<td>0,0001</td>
<td>0,008</td>
<td>0,6 (чел. зв) Kд=1</td>
<td>1,7</td>
<td>0,0022</td>
<td>0,0013</td>
<td>1,74</td>
<td></td>
</tr>
<tr>
<td>Уборка дернины (3-5 см)</td>
<td>10</td>
<td>0,0056</td>
<td>0,0033</td>
<td>0,0024</td>
<td>0,0057</td>
<td>0,0003</td>
<td>0,000032</td>
<td>0,024 (чел. зв) Kд=66,7</td>
<td>69</td>
<td>0,0011</td>
<td>0,0061</td>
<td>0,0047</td>
<td>0,0108</td>
</tr>
</tbody>
</table>

Kд – коэффициент дезактивации, показывает во сколько раз будет снижена доза после применения определенной контрмеры.

4.2.1. Описание и обсуждение полученных результатов

Для анализа используем результаты расчетов, показанные в таблице 4.2. В первом блоке таблицы представлены данные по расчетам надежности транспорта радионуклидов по 4 пастбищам: сначала при формировании дозы за счет потребления молока, затем – за счет потребления говядины.

По этим данным просчитаны величины перехода радионуклидов Cs137 ко всем группам населения. Эту величину можно использовать для расчета коллективной дозы, используя величину коэффициента дозовой цены [4] - 2·10^{-8} Зв/Бк. Полученная оценка коллективной дозы составляет около 1,6 чел. зв в год. При этом оценка средней величины индивидуальной дозы облучения людей составляет около 1,1 мЗв/год (при норме – 1 мЗв/год).

При этом сделаны оценки добавки к коллективной дозе за счет использования лесопродуктов (0,34 чел. зв) и продукции огородов (0,2 чел. зв/год). Тогда суммарная коллективная доза составляет около 2,14 чел. зв/год, а индивидуальная доза облучения для каждого жителя данного села в среднем составит 1,4 мЗв/год.

В данной агроэкосистеме могут быть задействованы различные контрмеры. В табл. 4.2 представлены расчетные данные по ряду возможных контрмер для снижения коллективной доз...
известно, является основным дозообразующим продуктом питания, особенно у жителей сельской местности.

Более детальный расчет на основе предложенной модели надежности позволил провести всестороннюю оценку эффективности данных контрмер. Показано, что по результатам таких системных расчетов Кд для ферационных болосов составил около 1,8 единицы, а ферационных фильтров 1,05. Это показывает, что локальная эффективность контрмеры еще не гарантирует общей системной эффективности для всей агрокосистемы.

После аварии на ЧАЭС также использовалась такая контрмера, как сеянца – когда дикие пастбища засевают культурными травами. При этом на данных территориях наблюдаются высокие урожаи с более низкими значениями коэффициентов накопления (Кн) в системе почва-трава. В этом случае значение Кд должно быть около 3. Системные расчеты методами теории надежности составили по всем пастбищам значение Кд = 2,75. Это приемлемое значение Кд.

Эффективным методом дезактивации может быть и удаление на пастбищах верхнего слоя дернины с помощью специальной машины TURF CUTTER [7]. Применение данной контрмеры в 30-км зоне на территории Беларуси и Украины показало резкое, более чем в 10 раз, снижение загрязнения молока и мяса у коров, которые выпасают на обработанном таким образом пастбище. Расчеты показали, что по параметрам надежности Кд после использования снятия дернины, по величине Кд может достигать 69 единиц. Следует отметить, что данная контрмера трудоемка и достаточно дорога.

В Ровенской области в качестве контрмеры были опробованы такие методы, как введение в желудок коровы ферационных болосов (Кд = 4), а также сепарацию, полученного от коров молока, через специальные пропитанные ферационом фильтры (Кд = 5). Ферации обладает избирательной способностью связывать цезий и, тем самым, снижать его содержание в молоке, которое, как известно, является основным дозообразующим продуктом питания, особенно у жителей сельской местности.
систематический и детальный мониторинг загрязнения продуктов питания, почв и воды. Ведутся измерения содержания 137Cs на счетчиках излучений человека (СИЧ) и по моделям рассчитывается ожидаемая эффективная доза для населения конкретных сел. По данным мониторинга молока проводится оценка, так называемой паспортной дозы.

Но кроме оценок и мониторинга действующего состояния экологической безопасности для населенных пунктов (НП) Украины, есть настоятельная потребность, опираясь на эти данные, иметь расчеты по моделям долгосрочного прогноза радиоэкологического состояния НП. Такой прогноз позволит делать выбор и обоснование реальных контрмер для контроля и управления экологической безопасностью территорий и населения, загрязненных сел Украины. Поэтому разработка относительно простых математических моделей динамики распределения радионуклидов, которые опираются на данные конкретных натурных исследований, является важной и актуальной проблемой современной экологии. С одной стороны, этот подход позволит в будущем иметь действующую модель радиоэкологической безопасности для каждого конкретного НП. С другой стороны, такая действующая модель, которая опирается на реальные параметры экосистем данного НП, позволит оценить возможные экологические риски от других поллютантов (тяжелых металлов, гербицидов и т.д.). Речь идет о восстановлении общенных параметров экологической безопасности и экологических рисков, которые характерны для данного НП.

В современной экологии и радиоэкологии разработано достаточно подходов и моделей для оценки экологической емкости и радиоемкости для больших территорий, но явно не хватает методов и моделей, пригодных для оценки и прогноза состояния локальных экосистем для конкретных НП Украины. Поэтому конкретизация существующих общенных подходов и моделей является актуальным и важным заданием современной экологии. Совершенно необходимо иметь метод оперативного создания моделей экологической безопасности для конкретных НП, с привязкой их для конкретных условиях какого-либо НП, для использования, которого от экологов не требуется сложной специальной подготовки. Предлагаемый нами данный подход позволит включить в экологический паспорт НП действующую математическую модель экологической безопасности, которая может быть верифицирована по данным мониторинга. Наличие такой модели позволит минимизировать объем и детальность мониторинга, а также прогнозировать критические ситуации в данной экосистеме. Это позволит установить лимиты ее экологической емкости для ограничения чрезмерного антропогенного давления на территории, исследуемого НП.

Подчеркнем, еще раз, что цель данного раздела работы – моделирование процесса миграции радионуклидов по трофической цепи: почва–кормовые растения–корова–молоко–человек, – в условиях Волынской обл. (по цезию-137) на примере с. Галузия и в условиях Тернопольской области на примере с. Коцюбинчики (по стронцию-90). Требуется установить параметры и исследовать особенности данного явления. Это даст возможность иметь методы и подход для контроля, прогноза и управления радиоэкологической безопасностью для локальных экосистем НП Украины.

В связи с этим была необходимость решить следующие научные задачи:

- собрать и проанализировать необходимые данные об особенностях радиоэкологической ситуации на территории села Галузия Вольнской области и села Коцюбинчики в Тернопольской области, провести сравнительный анализ, определить и исследовать радиоэкологические критические экосистемы выбранных для исследования селах;
- построить блок-схемы для камерных моделей экосистем выбранных НП, определить необходимые критические и базовые параметры переноса радионуклидов по трофическим цепям;
- исследовать цикл камерных моделей для села Галузия Вольнской области и установить основные пути, динамику миграции и разработать прогноз формирования дозовых нагрузок для населения данного села;
- исследовать цикл камерных моделей для села Коцюбинчики в Тернопольской области; установить основные пути, динамику миграции и разработать прогноз формирования дозовых нагрузок для жителей данного села;
- провести сравнительный анализ особенностей формирования радиоэкологической безопасности в избранных НП Украины и предложить пути управления экологической безопасностью и контрмеры для минимизации дозовых нагрузок;
– рассмотреть возможность использования предложенного метода камерных моделей для аналогичных экосистем НП Украины.

Мы исследовали закономерности миграции радионуклидов по трофическим цепям экосистем выбранных НП, загрязненных в результате аварии на Чернобыльской АЭС.

Предметом исследования тут также являются: математические модели динамики процесса миграции радионуклидов по трофическим цепям: почва–кормовые растения–корова–молоко–человек; – в условиях Волынской области (по цезию-137) на примере с. Галузия и в условиях Тернопольской области (по стронцию-90) на примере с. Коцюбинчики.

В нашей работе были использованы методы и данные натурных экспедиционных исследований содержания цезия-137 (с. Галузия) и стронция-90 (с. Коцюбинчики) в почвах, растениях, молоке, коровах (приживенно) и у людей (измерения на аппаратах СИЧ содержания цезия-137 в организмах людей из населения с. Галузия), радиометрическое исследования образцов по стронцию-90 по данным Тернопольской областной санитарно-эпидемиологической станции (СЭС) для жителей села Коцюбинчики; системный анализ с построением блок-схем экосистем выбранных НП и математическое моделирование радиоэкологических процессов с использованием камерных моделей. Для математических расчетов был использован программный продукт MAPLE-5.

Нами впервые разработан и реализован метод оценки и расчета параметров камерных моделей локальных экосистем по данным мониторинга и по литературным данным, используя наше собственное видоизменение метода камерных моделей. В данной модификации вместо параметров скорости переноса радионуклидов от единицы веса (например, от кг почвы) из каждой камеры в камеру (например, в растения) были использованы скорости (доли) переноса части радионуклидов из камеры в камеру за единицу времени (в нашей работе – это год). Этот метод позволяет обобщить характеристики экосистем и получить интегральные характеристики процесса переноса радионуклидов в экосистеме.

Нами была впервые разработана и построена математическая модель радиоэкологических процессов типовых локальных экосистем с оценкой формирования дозовых нагрузок для населения на долгосрочный период. Такая модель пригодна для моделирования практически любого типа локальных экосистем, характерных для территории Украины, и может быть использована для оценки экологического состояния каких-либо других агрокосистем.

В расчетах на моделях впервые показано, что, в зависимости от установленных параметров камерных моделей, формирования высоких дозовых нагрузок у населения может осуществляться относительно быстро (с. Галузия), или иметь характер медленного накопления (с. Коцюбинчики). Это означает принципиально разную динамику формирования дозовых нагрузок от цезия-137 и от стронция-90, что может реально встречаться в разных локальных экосистемах Украины.

Практическое значение полученных результатов состоит в том, что разработанный подход позволяет по данным мониторинга устанавливать базовые характеристики и параметры камерных моделей любых типов локальных агрокосистем.

Разработанные нами математические модели локальных экосистем выбранных НП характеризует их эвристичность, которая позволяет по данным мониторинга провести верификацию ситуации и осуществить долгосрочный прогноз радиоэкологической безопасности в исследуемых НП. Такие модели имеют универсальный характер. При их применении к конкретным натурным условиям других НП, они могут быть полезными для оценки, контроля и прогноза их экологической безопасности, как для условий радионуклидного загрязнения, так и для загрязнения другими поллютантами.

В радиоэкологии можно выделить две основные темы взаимосвязанные проблемы: миграцию радионуклидов и их накопления в разных элементах экосистемы. Существует также проблема действия радионуклидов на биоту экосистем. Существуют разнообразные радиоэкологические ситуации, которые связаны с накоплением радионуклидов в сельскохозяйственную сферу жизни. Поэтому накопление радионуклидов растениями из почвы определяет исходные масштабы включения радионуклидов в трофические цепи в системе: радиоактивные выбросы и сбросы–почва–сельскохозяйственные растения–сельскохозяйственные животные–человек. Поступление радионуклидов в растения зависит от ряда факторов: физико-химических свойств радионуклидов, видовых особенностей растений, свойств почвы и ее механической
обработки, климатических факторов, системы мелиорации, внесения удобрений и т. Перевод радионуклидов из рациона в организмы животных определяется физико-химическими свойствами радионуклидов, а также видовыми особенностями и возрастом животных.

В специальном разделе рассмотрим основные методы исследований, которые были нами использованы. При изучении проблемы миграции радионуклидов в экосистеме математическое моделирование является одним из основных методов исследований. Оно позволяет выделить существенные особенности явления, которое исследуется, и выразить полученное приближенное описание в виде системы математических выражений (модели), которые имитируют до определенной меры, точность поведения реальной системы. Важной особенностью данного метода является его интерактивность. При проверке или исследовании устанавливается соответствие модели явлению, которое наблюдается. Математическая модель базируется на показателях мониторинга, экспериментальных данных, что позволяет организовать комплексное исследование по принципам динамического взаимодействия модели и данных мониторинга.

Для моделирования миграции радионуклидов в системе почва-растения характерным является использование камерных моделей. При этом камерой можно считать любой элемент экосистемы, агропротеза (или его часть), где произойдет накопление (удержание) радионуклидов.

В пределах такого подхода агропротеза, рассматривается в виде совокупности однородных камер, между которыми происходит перенос радионуклидов, что характеризуется некоторыми функциями k_{ji} q_j. Эти функции описывают интенсивность потоков радиоактивных веществ между камерами.

При математическом описании переноса веществ в камерных моделях используют, как правило, аппарат обыкновенных дифференциальных уравнений:

$$\frac{d^2 q_i(t)}{dt^2} = \sum_{j=1}^{n} k_{ji} q_j - \sum_{j=1}^{n} k_{ij} q_i - \lambda q_i$$

где $q_i(t)$ — содержание радионуклида в камере i; k_{ji} и k_{ij} — коэффициенты перехода между камерами; $k_{ij} q_i$ — количество вещества, которое поступает в единицу времени из камеры j в камеру i; $k_{ij} q_i$ — количество вещества, которое выходит за единицу времени из камеры i в камеру j; λq_i — постоянная радиоактивного распада.

Кlassические камерные модели [8,9] были нами модифицированы таким образом, что вместо параметров скорости переноса радионуклидов от единицы массы из одной камеры в другую были использованы скорости переноса части радионуклидов из камеры в камеру за единицу времени.

На этой основе нами был проведен анализ данных по мониторингу села Галузя Маневческого района Вольнской области. Нами были использованы данные натурных экспедиционных исследований содержания цезия-137 в почве, растениях, молоке, коровах (прижизненно) и у людей (измерения на СИЧ), данные анкетного опроса населения на территориях избранных сел Вольнской области, отнесенных к второй и третьей зоне отчуждения, которые пострадали вследствие аварии на ЧАЭС; результаты экспериментальных исследований на полигонах и в условиях Сарненской опытной станции (радиометрические и гамма-спектрометрические измерения образцов) и описана авторская разработка математической модели с использованием камерных моделей.

Многочисленными исследованиями было установлено, что на территории с. Галузя формируются значительные дозовые нагрузки у людей вследствие больших значений коэффициентов перехода в системе почва-растения. Самыми главными причинами этого явления являются торфяные и болотные почвы, которые доминируют на данных территориях, высокая степень увлажнения и переувлажнения почвы, кислые почвы, низкий уровень содержания минеральных веществ на данных территориях. Это способствует высокому уровню загрязнения травы и сена, лесных продуктов — грибов и ягод. Использование загрязненных кормовых трав ведет к миграции радионуклидов в системе трава–животные. В этом случае уровень содержания радионуклидов в молоке та мясе существенно повышается. Коэффициент перехода (K_{ij}) применяют для наземных организмов, когда речь идет о миграции радионуклидов по трофическим цепям; он отражает ту часть радионуклидов, которая попадает от одного элемента экосистемы к другому; коэффициент демонстрирует в сколько раз большей (или меньшей) может быть...
активность определенного радионуклида в элементах экосистемы в сравнении с окружающей средой. Для системы почва--растения K_p – это отношение активности радионуклида в 1 кг воздушно-сухой биомассы растений к его содержанию в 1 м² почвы, на котором эти растения выращены.

Как известно, Волынская область является наиболее “чистой” среди пяти загрязненных радионуклидами областей Украины по уровням загрязнения Cs-137 почв, в частности сельхозугодий, лесов, лесных урочищ, и площадями такого загрязнения. При этом индивидуальные дозы облучения людей в Маневичском районе Волынской области близки к дозам, которые наблюдаются в наиболее загрязненном районе Житомирской области – Народском.

Предварительные оценки показали, что для данной территории есть три основные пути поступления радионуклидов Cs-137 к человеку, которые более детально будут рассмотрены ниже. Первый из них – через урожаи (пастбища и сенокосы), которые являются кормовой базой для молочного и мясного скота. Второй путь поступление через лесные продукты – грибы и лесные ягоды. Третий – приусадебный участок (огород).

Построена блок-схема камерной модели (см. рис. 4.1) потоков (I–VI) радионуклидов Cs-137 от трех пастбищ, одного сенокоса, лесных продуктов данной местности (грибов и лесных ягод) и огородной продукции с приусадебных участков и проведен ее расчет.

Структурированная блок-схема камерной модели представлена на рис. 4.2.

Указанные на схеме параметры (от a_{12} до a_{310}) обозначают скорости переноса радионуклидов между камерами экосистемы и имеют размерность: часть радионуклидов от имеющегося запаса, которая переносится между камерами за один год.

Была сформирована система из дифференциальных уравнений для камер агроэкосистемы с. Галузия (см. формулу (4.2) и с помощью программного продукта MAPLE-5, она решена. Рассмотрели камерную модель потоков радионуклидов в данном населенном пункте и провели расчет по данной модели (см. рис 4.2. и 4.3.).

Мы провели для примера расчет для первого пастбища с такими средними значениями скоростей перехода между камерами: $x(t)$ – камера «почва на пастбище 1» (коэффициент $a_{12} = 0,06$); $y(t)$ – камера «трава на пастбище 1» (коэффициент $a_{32} = 0,38$); $z(t)$ – камера «коровьи» (коэффициент $a_{44} = 0,13$ – переход в молоко; коэффициент $a_{55} = 0,52$ – переход в мясо; коэффициент $a_{66} = 0,35$ – переход в отходы жизнедеятельности коров);

$k(t)$ – камера «молоко» (коэффициент $a_{47} = 0,22$ – переход радионуклидов в молоко для детей; коэффициент $a_{48} = 0,15$ – переход в молоко для пенсионеров; коэффициент $a_{50} = 0,47$ – переход радионуклидов в молоком в организм работников; коэффициент $a_{10} = 0,1$ – вывоз радионуклидов с молокопродуктами на экспорт);

$l(t)$ – камера «дети» (коэффициент $a_{57} = 0,005$ – переход радионуклидов с мясом к детям);

$m(t)$ – камера «пенсионеры» (коэффициент $a_{58} = 0,004$ – переход в мясо);

$n(t)$ – камера «рабочие» (коэффициент $a_{49} = 0,47$ – переход с молоком; коэффициент $a_{59} = 0,013$ – переход с мясом);

$o(t)$ – камера «мясо коров» (коэффициент $a_{35} = 0,52$ – переход из рациона коров в мясо);

$p(t)$ – камера отходы «жизнедеятельности коров» (коэффициент $a_{56} = 0,36$);

$r(t)$ – камера «экспорт» (коэффициент $a_{46} = 0,1$ – для молока; коэффициент $a_{36} = 0,978$ – для мяса).

Климатические и другие факторы среды учтены нами в выборе минимальных, средних и максимальных значений коэффициентов переноса радионуклидов по камерам экосистемы.

По полученным решениям построены графики динамики выноса радионуклидов и проведен анализ полученных результатов. Данные, которые получены по моделям, четко коррелируют с данными натурных исследований. В результате нами было получено расчетные данные относительно динамики потоков радионуклидов по камерам экосистемы, которая нами исследуется.

Был проведен также анализ данных по мониторингу села Коцюбинчики Черковского района Тернопольской области (аналогично, как в с. Галузия). Построена блок-схема камерной модели потоков радионуклидов 90Sr, в данном НП (см. Рис 4.4). Структурированная блок-схема экосистемы с. Коцюбинчики аналогична блок-схеме для с. Галузия (см. рис.4.2.).

Построена камерная модель радиоэкологических процессов для с. Коцюбинчики и проведены расчеты по данной модели. По
результатам построены графики динамики поступления радионуклидов к человеку от всех составляющих экосистемы. Проведен сравнительный анализ радиоэкологических процессов и экологической безопасности в селах, которые исследуются (с. Галузия и Коцюбинчики) (рис. 4.5.).

Известно, что на территории Украины есть села, загрязненные 137Cs, или 90Sr. Такие экосистемы могут иметь разные особенности радиоэкологических процессов, которые непосредственно влияют на формирование дозовых нагрузок для населения. Исследованиями было установлено, что на территории ряда сел Украины формируются значительные дозовые загрузки для людей вследствие больших значений коэффициентов перехода в системе почва-растения и высоких уровней загрязнения сена, молока, мяса, лесных продуктов – грибов и ягод. Поэтому важно было сделать сравнение особенностей радиоэкологических процессов в типовых экосистемах сел Украины с различными вариантами загрязнения. Поскольку в моделях мы анализируем суммарные потоки радионуклидов от пастбищ к людям, проживающим на данной территории, то мы соответственно можем оценивать суммарные коллективные дозы для всех проживающих по группам населения. Индивидуальные дозы облучения при этом не оцениваются.

Нашими исследованиями было установлено, что на территории Маневицкого района (с. Галузия) в Волынской области, загрязненного вследствие аварии на ЧАЭС, в основном 137Cs, формируются заметные дозовые нагрузки у людей вследствие больших значений коэффициентов перехода в системе почва-растения и высоких уровней загрязнения сена, молока, мяса, лесных продуктов – грибов и ягод.

Для сравнения и дальнейшего развития данного подхода было важно проверить и использовать этот метод камерных моделей для села, где доминирует загрязнение не 137Cs, а другим дозообразующим биогенным радионуклидом – 90Sr. Этот радионуклид очень опасен, особенно для детей. Тут дозы облучения у людей формируются, в основном, за счет употребления молока.

Для таких исследований нами было избрано село Коцюбинчики Тернопольской области с небольшими уровнями загрязнения, поскольку для него собраны данные многолетних измерений на базе областной СЭС, Тернопольской областной государственной проект-
Рис. 4.5. Блок-схема основных составляющих экосистемы с. Коцюбинчики Чертовского района Тернопольской области.

Пастбище 1 (сеянка):
S = 84 га;
Урожай – 1,4 кг/м² Плотность загрязнения почвы – 1,27 Ки/км²,
КП = 1–5,
Коров – 30

Пастбище 2:
S = 29 га;
Урожай – 0,2 кг/м² Плотность загрязнения почвы – 1,29 Ки/км²,
КП = 3–8
Коров – 20

Пастбище 3:
S = 90 га;
Урожай – 0,5 кг/м² Плотность загрязнения почвы – 1,34 Ки/км²,
КП = 5–11
Коров – 35

Село Коцюбинчики

Население – 850,
в том числе дети – 61,
работчие – 330,
пенсионеры – 459.
Плотность загрязнения почвы на огородах – 1,2 Ки/км²

Пастбище 4:
S = 40 га; урожай – 0,3 кг/м²
Плотность загрязнения почвы – 1,19 Ки/км²
КП = 0,5–3
Коров – 28

Пастбище 5 (сеянка):
S = 32,5 га; урожай – 1,3 кг/м²
Плотность загрязнения почвы – 1,30 Ки/км²
КП = 4–9
Коров – 22
носит в большей степени упрощающую, некоствентную черту, как и многие другие схемы, может быть применена в качестве основного инструмента для анализа и прогнозирования загрязнения территорий.

Приведенные данные показывают, что в сельской местности характерно присутствие радионуклидов, в основном в виде чернобыльских радионуклидов, которые попадают в организм через продукты питания. Это особенно характерно для детского населения и для людей, работающих в сельском хозяйстве.

В рамках моделирования и прогнозирования загрязнения территорий, важно учитывать не только радионуклиды, но и другие виды загрязнения, такие как пестициды, металлы, радиоактивные элементы, которые могут быть включены в пищевую цепочку и накапливаться в организме.

На рис. 4.6 представлены результаты расчетов для каменного стада в селе Галузия, по которым можно проследить динамику формирования дозовых нагрузок у разных социальных групп населения данного села за счет употребления молока. Верхняя кривая отображает накопление радионуклидов, а значит и дозы от употребления молока, для групп работающих, средняя – для детей, и нижняя кривая (минимальная доза получена от молока) – для пенсионеров.

Понятно, что такой подход к оценке рациона питания, в частности учитывая большие уровни употребления молока у работающих и детей в селе Галузия, а для пенсионеров этот уровень употребления значительно ниже. На графиках можно видеть, что для данного села характерен сначала быстрый, а потом медленный накопление коллектива от разных групп населения.

Для жителей с. Коцюбиничи (рис. 4.7) характерна другая динамика накопления коллективной дозы. Модель демонстрирует,
что через 29 лет после аварии, не стоит ожидать заметных доз облучения населения за счет стронция-90, но со временем эти дозы возрастают. Тут можно ожидать очень медленное накопление дозы в начале, а потом ее увеличение для всего населения. При этом максимальные коллективные дозы можно ожидать для работающих, как и в с. Галузия. Следующими по уровню накопления дозы могут быть пенсионеры, а относительно минимальные дозы можно ожидать у детей с. Коцюбинчики.

Опираясь на данные моделирования, мы построили графики динамики ожидаемой коллективной дозы для трех выделенных социальных групп в данном селе – работающие, пенсионеры и дети. Деление на группы проведено потому, что по данным литературы и данным экспедиционных исследований в селе количество употребленного молока в разных группах населения отличается. На рис. 4.6 и 4.7 показана динамика формирования дозовых коллективных нагрузок в разных социальных группах за счет употребления основного дозообразующего продукта – молока.

Сравнивая данные расчетов на рис. 4.6 та 4.7, следует отметить, что в целом коллективные дозы для с. Коцюбинчики, практически вдвое меньше, чем для с. Галузия. Это понятно, поскольку уровни загрязнения в с. Галузия заметно больше, чем в с. Коцюбинчики. Важно, что практически на 29-й год после аварии уровень накопления коллективной дозы у населения с. Коцюбинчики отчетливо меньше, чем для с. Галузия.

Разница между этими типовыми агроэкосистемами относительно радиоэкологических процессов и параметров накопления коллективных доз четко связана с различными радионуклидами, климатическими факторами, разницей в употреблении продуктов питания. Позитивную роль в формировании меньшей коллективной дозы в с. Коцюбинчики играет отсутствие вклада лесной компоненты в накоплении коллективной дозы. В то же время, для с. Галузия, лесной компонент играет ведущую роль в формировании коллективной дозы у жителей данного села. Считаем, что эти явления отображают фундаментальные особенности в формировании коллективной дозы для населения Украины по отношению к агроэкосистемам при значительном вкладе лесной составляющей (пример с. Галузия) и для случая агроэкосистемы (с. Коцюбинчики), где отсутствует лесная составляющая накопления коллективной дозы.
Годы после аварии

Рис. 4.6. Динамика формирования дозовых нагрузок от употребления молока для разных социальных групп населения в с. Галузия: 1 – для работающих; 2 – для детей; 3 – для пенсионеров

Годы после аварии

Рис. 4.7. Динамика формирования дозовых нагрузок от употребления молока для разных социальных групп населения в с. Коцюбинчики: 1 – для работающих; 2 – для пенсионеров; 3 – для детей
Проведенное исследование радиоэкологических процессов, которые происходят в с. Галузия (Волынская область) и с. Коцюбинчики (Тернопольская область), их обобщение и анализ позволили сделать такие предварительные выводы.

1. В данном исследовании разработан и впервые применен модифицированный метод камерных моделей, в котором использованы параметры-скорости перехода радионуклидов между камерами экосистемы, а не скорости перехода, рассчитанные на единицу веса или объем. Этот подход позволяет осуществлять общую системную оценку состояния потоков радионуклидов и прогнозировать их динамику.

2. Создан системный тип радиологического исследования населенных пунктов, который охватывает основные звенья: почвы, сено, коровьи, молоко, лесные продукты, людей. Показано, что для исследованной территории Украины (на примере агрокосистем с. Галузия и с. Коцюбинчики) есть три основные потоки поступления радионуклидов 137Cs та 90Sr к человеку. Первый из них – через уроцища (пастища и сено), растительность которых является кормовой базой для молочного и мясного скота. Он составляет около 70–80 % общей дозы для жителей этих населенных пунктов. Другой – присадебный участок (огород), он составляет около 10–20 % от общей дозы. Третий поток – поступление радионуклидов через лесные продукты (грибы и ягоды), которые составляют около 10 % от общей коллективной дозы (характерный для с. Галузия).

3. Разработаны и проанализированы камерные модели реальных экосистем села Галузия Маневицкого района Волынской области и села Коцюбинчики Черковского района Тернопольской области, которые находятся под влиянием аварии на Чернобыльской АЭС. В моделях учтены все основные потоки радионуклидов цезия-137 и стронция-90. Блок-схемы для камерных моделей включают все основные пастища. В блок-схемы, там, где это необходимо, включены также потоки радионуклидов от лесных продуктов (грибы и ягоды), а также – от использования огородной продукции.

4. В результате моделирования получены оценки и прогноз ожидаемого загрязнения радионуклидами 137Cs и 90Sr продуктов питания людей (молоко и мясо), что отображено в значениях коллективных дозовых нагрузок для людей.

5. По результатам моделирования определено, что в селах типа Галузия, заметные дозовые нагрузки сформировались не сразу после аварии, а только в 1992–1994 годах. Сейчас, через 28 лет после аварии на ЧАЭС, у людей формируются дозы облучения от цезия-137: от 40 до 80 человеко-зиверт. На данных территориях есть большой вклад в коллективную дозу лесной составляющей. Для сел типа Галузия характерно заметное накопление коллективной дозы для населения на протяжении 30–40 лет после аварии, что составляет около 1 % от запаса радионуклидов цезия-137 в данной экосистеме.

6. Для сел типа Коцюбинчики, где доминирует загрязнение стронцием-90 и отсутствует лесная составляющая коллективной дозы, формируются незначительные дозы облучения в первые десятилетия после аварии на ЧАЭС: через 25 лет коллективная доза составляет 0,3–0,5 человеко-зиверт. Накопление определенной дозы в с. Коцюбинчики на 40-й год после аварии отличается незначительно, и не превышает 0,1 % от запаса радионуклида стронция-90 в данной экосистеме. Но со временем тут можно ожидать достаточно заметного накопления коллективной дозы. В результате исследований выявлено закономерность существенного увеличения коллективной дозы в селах со стронциевым загрязнением. Это означает, что экосистемы такого типа со временем могут стать опасными.

7. Установлено по данным моделирования и верифицировано по данным натурного исследования областной СЭС, что значительная часть коллективной дозы не формируется локально в данных селах, а экспертировается на другие территории через вывоз молока, мяса и лесных продуктов. Такое явление экспертирования коллективной дозы за пределы сел, является общей характеристикой для всей территории Украины. Полученные результаты свидетельствуют, что экологическая безопасность данной территории может быть достигнута только при условии использования системы защитных контрмер.

8. Предложено модифицированную камерную модель, пригодную для моделирования практически любого типа локальных экосистем, характерных для территории Украины, которая может быть использована для оценки, контроля и прогноза их экологического состояния как для радионуклидного загрязнения, так и для других поллютантов в агрокосистемах.
4.4. Проблемы надежности локальной агрозоэкосистемы

Нами сделаны расчет и оценка поступления радионуклидов Cs-137 в типичной агрозоэкосистеме (для с. Галузия). Блок-схема камерной модели с. Галузия приведена выше. По надежностной последовательной модели мы оценивали надежность «поступления» радионуклидов от каждого из пастбищ села (табл. 4.3).

Также нами была проведена оценка эффективности применения различных контрмер в типичной агрозоэкосистеме на примере с. Галузия (см. табл. 4.2)

4.5. Оценка и повышение экологической безопасности агрозоэкосистемы на основе моделей надежности

Исследования радиоэкологических процессов в агрозоэкосистемах важны для оценки и прогноза их экологической безопасности для населения, особенно при формировании дозовых нагрузок. Кроме использованного нами ранее метода камерных моделей, считаем необходимым разработать подходы к более общей оценке надежности и устойчивости агрозоэкосистемы. Речь идет об анализе агрозоэкосистемы, как системы транспорта радионуклидов от почвы к человеку, средствах и методах модификации данных процессов и оценки «надежности» этого процесса.

Практически в этом новом направлении оценки и прогноза экологической безопасности на основе моделей радиоемкости и надежности, исследования ведутся только нами. Полученные результаты по оценке распределения и перераспределения радионуклидов в агрозоэкосистеме (на примере с. Галузия, Вольнская область) показали заметную динамику формирования дозовых нагрузок на людей. Для оценки и прогноза таких процессов нами предложено использовать модели и теорию надежности. Для этого агрозоэкосистема рассматривается, как система транспорта радионуклидов от почвы к человеку и рассчитывается надежность такого транспорта, что определяет формирование дозовых нагрузок у населения. Нами предложены количественные методы оценки надежности отдельных элементов агрозоэкосистемы и агрозоэкосистемы в целом, как средства «доставки» радионуклидов от пастбищ к человеку. Данный метод и модели позволили по-новому взглянуть на проблему экологической безопасности человека и рассмотреть проблемы применения защитных контрмер, для ограничения и минимизации потока радионуклидов к человеку.
Таблица 4.3. Оценка и расчет надежности агрокосистемы с. Галузия, как системы поступления радионуклидов Cs-137 от пастбищ в популяцию людей, которые живут в этом селе.

<table>
<thead>
<tr>
<th>Номер пастбища и значение скоростей перехода между камерами</th>
<th>Надежность поступления радионуклидов через молоко</th>
<th>Надежность поступления радионуклидов через мясо</th>
<th>Сумма величин надежности по строкам, по пастбищам</th>
<th>Надежность по всем пастбищам при разных значениях параметров</th>
<th>Ожидаемая коллективная доза, (дозовая цена Cs-137=2 Е-8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.MIN</td>
<td>0,00518</td>
<td>0,00424</td>
<td>0,00505</td>
<td>0,01447</td>
<td>0,1202 (MIN)</td>
</tr>
<tr>
<td>1. MIDLE</td>
<td>0,0273</td>
<td>0,0203</td>
<td>0,0185</td>
<td>0,0661</td>
<td>Σ Ai = 3,968</td>
</tr>
<tr>
<td>1. MAX</td>
<td>0,04177</td>
<td>0,02742</td>
<td>0,02687</td>
<td>0,09606</td>
<td></td>
</tr>
<tr>
<td>2.MIN</td>
<td>0,00297</td>
<td>0,00266</td>
<td>0,00426</td>
<td>0,00991</td>
<td></td>
</tr>
<tr>
<td>2. MIDLE</td>
<td>0,0243</td>
<td>0,0184</td>
<td>0,0246</td>
<td>0,0653</td>
<td>0,3041 (MIDLE)</td>
</tr>
<tr>
<td>2. MAX</td>
<td>0,0367</td>
<td>0,0244</td>
<td>0,0122</td>
<td>0,0733</td>
<td>Σ Ai =3,968</td>
</tr>
<tr>
<td>3.MIN</td>
<td>0,01109</td>
<td>0,01097</td>
<td>0,01069</td>
<td>0,03275</td>
<td></td>
</tr>
<tr>
<td>3. MIDLE</td>
<td>0,0281</td>
<td>0,0265</td>
<td>0,0228</td>
<td>0,0774</td>
<td></td>
</tr>
<tr>
<td>3. MAX</td>
<td>0,0552</td>
<td>0,0446</td>
<td>0,0353</td>
<td>0,1378</td>
<td>0,4574 (MAX)</td>
</tr>
<tr>
<td>4.MIN</td>
<td>0,0194</td>
<td>0,0166</td>
<td>0,02707</td>
<td>0,0631</td>
<td>Σ Ai =3,968</td>
</tr>
<tr>
<td>4. MIDLE</td>
<td>0,0419</td>
<td>0,0323</td>
<td>0,0421</td>
<td>0,1153</td>
<td></td>
</tr>
<tr>
<td>4. MAX</td>
<td>0,0642</td>
<td>0,0454</td>
<td>0,0380</td>
<td>0,1502</td>
<td>13,43 Е+3</td>
</tr>
</tbody>
</table>

240
Наша основная задача в данной работе – это применить эффективный анализ к агроэкосистеме, как системе транспорта радионуклидов из окружающей среды к человеку и составить прогноз вероятности и надежности поступления радионуклидов к людям, используя теорию и модели надежности. Реализация данной задачи позволит значительно расширить круг средств оценки и управления экологическими процессами и может существенно дополнить существующий метод камерных моделей и получить средство для выбора оптимальных контрмер для снижения поступления радионуклидов в рацион питания людей.

4.5.1. Основные полученные результаты
Разработанные нами модели и теория радиоемкости экосистем позволило ввести адекватный параметр – фактор радиоемкости – для определения состояния биоты экосистемы [1]. Радиоемкость – лимит радионуклидного загрязнения биоты экосистемы, при котором не наблюдаются серьезные изменения ее функционирования. При превышении данного лимита могут наблюдаться угнетение и/или подавление роста биоты. Фактор радиоемкости определяется как часть радионуклидного загрязнения, способного накапливаться в той или иной части (компоненте) экосистемы, без нарушения её структуры. В терминах теории надежности, фактор радиоемкости каждого из компонентов экосистемы определяет вероятность удержания в нем радионуклидов (в нашем примере это 137Cs). Экспериментальными и теоретическими исследованиями установлено, что чем выше фактор радиоемкости биоты в экосистеме, тем выше уровень благополучия и надежности биоты в ней. В частности, в исследованиях с растительными экосистемами показано, что способность биоты накапливать и удерживать радионуклидный трассер 137Cs, аналог минерального элемента питания растений калия, отображает устойчивость и надежность биоты данной экосистемы. Установлено, что снижение показателя радиоемкости биоты в растительной экосистеме при влиянии химических поллютантов и при гамма-облучении растений, четко отображает снижение благополучия биоты и надежности экосистемы.

Таким образом, на основании полученных экспериментальных и теоретических результатов, можно утверждать, что параметр радиоемкости способен выступать в качестве меры надежности каждого элемента экосистемы, а также экосистемы в целом. Чем выше фактор радиоемкости, и/или вероятность удержания трассера в каждом из элементов экосистемы, тем выше надежность составляющих элементов экосистемы. Используя эти параметры надежности элементов экосистемы и зная структуру конкретной экосистемы, мы имеем возможность адекватно оценивать надежность всей экосистемы через ее способность обеспечивать распределение и перераспределение трассера, которые отображают ее устойчивое состояние [1-3]. Одновременно эти оценки позволяют оценить и «надежность доставки радионуклидов» по трофической цепи от почвы, кормовых трав, коров и затем к человеку, в его рацион питания, при использовании данной агроэкосистемы.

Исходя из проведенных теоретических исследований, можно считать, что, используя параметры скоростей обмена радионуклидов между камерами (рассматривается камерная модель агроэкосистемы) $(a_i \text{ и } a_j)$, можно оценивать надежность компонента экосистемы, как элемента системы транспорта радионуклидов по камерам агроэкосистемы по выше приведенной формуле (см. формулу 4.1.).

Таким образом, мы оцениваем надежность i-того элемента экосистемы по его способности удерживать радионуклиды, которые попадают в него. Далее, зная надежностную схему – структуру обеспечения надежности транспорта радионуклидов от компонентов экосистемы к человеку (как последовательно, параллельную систему), на основе модели надежности, можно оценить надежность всей системы транспорта радионуклидов от экосистемы к людям.

4.5.2. Заключение и выводы. (Моделирование агроэкосистемы методами теории надежности)
Применим разработанный подход к оценке надежности транспорта радионуклидов для агроэкосистемы с. Галузя [1, 2]. Основные блоки транспорта радионуклидов в исследованной агроэкосистеме, получены нами ранее и описаны в наших работах [1, 2].

Установлено, что основными дозообразующими компонентами данной агроэкосистемы являются главные 4 пастбища села. Эти пастбища функционируют, в надежностном смысле, как параллельная система. Согласно теории надежности [1] общая надежность данной агроэкосистемы, как системы транспорта радионук-
видным от пастищ к людям, может быть представлена в виде суммы параметров надежности составляющих блоков-пастищ.

Камерную модель данной агрокосистемы возможно представить в виде соответствующей структуры. Установлено, что транспортный поток радионуклидов от каждого пастища образует параллельную систему доставки радионуклидов к популяции населения, образует четко последовательную систему: почва-трава-корова-молоко-мясо-люди. Надежность такой последовательной экосистемы может быть представлена в виде произведения параметров надежности составляющих блоков, которые образуют транспортный поток радионуклидов. Оценка надежности каждого из блоков может быть рассчитана с помощью формулы (см. формулу 4.1.).

На основе экспедиционных исследований, по результатам наблюдений и расчетов, нами получены оценки скоростей перехода между камерами исследованной агрокосистемы.

Данные таблицы 4.3 позволяют провести оценки надежности компонентов экосистемы по предложенной нами формуле (4.1.) и, зная последовательный характер связи отдельных компонентов агрокосистемы с популяцией населения, провести оценку надежности данной агрокосистемы, как системы транспорта радионуклидов от пастищ к населению. Для простоты мы ограничимся расчетом надежности исследуемой агрокосистемы при средних значениях параметров скоростей. Результаты расчетов представлены в таблице 4.1. Показанный тут подход может быть применен для оценки эффективности разного типа контрмер.

По этим данным нами были просчитаны величины перехода радионуклидов 137Cs ко всем группам населения. Эту величину можно использовать для расчета коллективной дозы, используя величины коэффициентов дозовых цепей для 137Cs [4; 5; 6] (2x10$^{-8}$ Зв/Бк). Полученная оценка коллективной дозы составляет около 1,6 человек.3Зв в год. При этом оценка средней величины индивидуальной дозы облучения людей составляет около 1,1 мЗв/год (при норме – 1 мЗв/год).

При этом оценки добавки к коллективной дозе за счет использования продуктов леса (0,34 человек.3Зв/год) и продукции огородов (0,2 человек.3Зв/год). Тогда суммарная коллективная доза составляет около 2,14 человек.3Зв/год, а индивидуальная доза облучения для каждого жителя данного села может составить около 0,4 мЗв/год.

В данной агрокосистеме могут быть задействованы разные контрмеры. В таблице 4.2 представлена расчетные данные по ряду возможных контрмер для снижения коллективных доз и тем самым повышения экологической безопасности для населения с. Галаузия. Из возможных контрмер [4; 5, 6] мы выбрали только некоторые.

Контрмера, которая часто используется после аварии на Чернобыльской АЭС, – внесение повышенных норм удобрений. При этом K_d составляет около 2 единиц.

Это означает, что при выращивании продукции растениеводства на повышенных нормах удобрений ожидаемая индивидуальная доза может быть снижена в 2 раза. В таблице 4.2 представлены данные расчета значений K_d по величине снижения дозы при использовании этой контрмеры. Расчет показал, что при этом наблюдается снижение поступления радионуклидов в продукты питания людей в 1,74 раза. То есть, получено, что K_d по величине экономии коллективной дозы для всего села за счет использования 4-х пастищ составляет 1,74.

После аварии на ЧАЭС также был использован такая контрмера, как сейка – когда дикие пастища засеявают культурными травами. При этом на данных территориях наблюдаются более высокие урожаи с наиболее низкими значениями коэффициентов накопления (K_h) в системе почва-трава. В этом случае значения K_d могут быть более 3. Системные расчеты методами теории надежности (при этом агрокосистема рассматривается как надежностная параллельная система из четырех пастищ) составили по всем пастищам значения $K_d = 2,75$. Это приемлемые значения K_d.

Эффективным методом дезактивации может быть и удаление на пастищах верхнего слоя дернины с помощью специальной машины TURF CUTTER (см. фото 1.2.). Применение данной контрмеры в 30-км зоне на территории Беларуси и Украины показало резкое, более чем в 10 раз, снижение загрязнения молока и мяса у коров, которых выпасают на обработанном таким образом пастище. Расчеты показали, что по параметрам надежности K_d после использования снятия дернины, по величине K_d может составить 69 единиц. Следует отметить, что данная контрмера трудоемка и достаточно дорого.

В Ровенской области в качестве контрмеры были апробированы такие методы, как введение в желудок коровы феррациновых
болюсов \((K_I = 4)\), а также сепарацию полученного от коров молока через специальные фильтры, которые обработаны феррацином \((K_I = 5)\). Феррацин имеет избирательную способность связывать цезий и, тем самым, снижать его содержание в молоке, которое, как известно, является основным дозообразующим продуктом питания, особенно у жителей сельской местности.

Более детальный расчет на основе предложенной модели надежности позволил провести всестороннюю оценку эффективности данных контрмер. Показано, что по результатам таких системных расчетов \(K_I\) для феррациновых болюсов составил около 1,8 единиц, а феррациновых фильтров 1,05. Это показывает, что локальная эффективность контрмеры еще не гарантирует общей системной эффективности для всей агроэкосистемы.

Для полноты картины на основе предложенного метода, мы рассмотрели вариант использования ряда контрмер: внесение удобрений, снятия дернины и применения болюсов. Считалось, что комбинация контрмер окажется заметно эффективнее каждого отдельно примененной контрмеры. Расчет показал, что комбинированное использование контрмер может позволить заметно, до 90 раз, снизить коллективную дозу для данного села.

Таким образом, нами впервые показана подход и возможность описания реальной экосистемы (на примере с. Галузя) на основе теорий и моделей радиоэкологии и надежности процессов распределения и перераспределения поллютантов (конкретно для \(^{137}\text{Cs}\)). Этот метод и поход позволяли получить оценки надежности транспорта радионуклидов от почвы к людям, и провести анализ возможности управления экологической безопасностью рассматриваемой агроэкосистемы, с целью снижения дозовых нагрузок для населения, использующего данную агроэкосистему для жизни и получения продуктов питания.

Предлагаемый здесь подход и методы моделирования и прогнозов могут быть использованы для повышения экологической безопасности для радионуклид загрязненных территорий Украины, Беларуси, России, а также и при загрязнении другими поллютантами.

Основные выводы по данной части

1. Агроэкосистема является источником транспорта радионуклидов из окружающей среды к человеку. Чем больше фактор радиоэкмости данной агроэкосистемы, тем она более надежна, и минимальна в плане транспорта радионуклидов к человеку.

2. Зная скорости миграции, распределения и перераспределения радионуклидов \(^{137}\text{Cs}\) в компонентах агроэкосистемы, а также величину перехода цезия ко всем группам населения, можно рассчитать величину надежности данной агроэкосистемы и оценить вклад разных составляющих агроэкосистемы в формирование дозовых нагрузок на население.

3. В зависимости от количества выпавших радионуклидов на территорию можно применять различные контрмеры, эффективность которых зависит от многих факторов (например, типа почв, влажности, количества осадков и др.)

4. Предлагаемый метод расчета надежности может быть применен для оценки уровня загрязнения и переходов для других поллютантов в экосистемах иного типа.

5. В зависимости от количества выпавших радионуклидов на территорию можно применять различные контрмеры, эффективность которых зависит от многих факторов (например, типа почв, влажности, количества осадков и др.)

Литература

6. Проблемы и перспективы фитодеконтаминации и фитомикробной ремедиации почв, загрязненных радионуклидами / Ю.А. Кутлахмедов, Н.В. Зезина, А.Н. Михеев и др. // Экотехнология и ресурсосбережение. – 2004. – № 1. – С. 49–53.

ЧАСТЬ 5.

ОЦЕНКА И МОДЕЛИРОВАНИЕ ЭКОЛОГИЧЕСКИХ РИСКОВ ОТ РАДИАЦИИ

5.1. Риск и экологический риск

5.1.1. Определения риска

По-видимому, эта тенденция в определении риска унаследована из гражданского права, точнее - из практики страхования, где под риском понимают вероятность (шанс) наступления нежелательных последствий. В опубликованной в 1993 г. монографии Ю. Хэлленбека, посвященной проблемам количественного оценивания экологического риска и риска профессиональных заболеваний, термин "risk" рассматривается как синоним терминов "вероятность" и "частота" [4].

Еще не сложились представления о риске, связанном с проявлением конкретных природных процессов. Так, до настоящего времени отсутствует единая методология оценки риска геологических процессов. При оценивании риска от воздействия землетрясений рассматриваются различные виды ущерба на конкретных
объектах, а значения суммарного ущерба считаются случайными величинами. При этом сейсмический риск определяется вероятностными функциями распределения этих величин, заключенными в определенных интервалах времени. В то же время геологический и геохимический риски определяются как "вероятности активизации и проявления природных или техногенных геологических процессов на определенной территории" [2]. Так называемый эколого-геоморфологический риск определяется как "степень вероятности совокупного проявления опасных и катастрофических процессов рельефообразования за определенный интервал времени, влекущих за собой экологические последствия" [1]. В терминах вероятности определяет геологический риск Е.С.Дзекцер, предлагая использовать в качестве общего выражения для оценки риска формулу полной вероятности [4].

Обзор научных публикаций показывает, что все большее распространение получает такой подход к определению риска неблагоприятного события, который учитывает не только вероятность этого события, но также все его возможные последствия. Вероятность события или процесса здесь выступает одним из компонентов риска, а мера последствий (ущерба) - другим. Такое двумерное определение риска используется при количественном оценивании риска.

Однако существует и иной подход к определению риска - многомерный. Он основан на многочисленных факторах, ответственных за восприятие риска и влияющих на принятие связанных с риском решений. Эти факторы, выявленные психологами, все они имеют качественный характер. Чтобы сравнивать степени проявления этих факторов, им приписываются условные единицы (например, по пятибалльной системе: если данный фактор считается очень сильным, то его «вес» принимают за 5, а если очень слабым, то за 1. После этого все «веса» суммируются, в этом заключается сущность так называемого психометрического подхода к риску, использующего его многомерное определение. Многомерное определение носит качественный характер, оно полезно при выявлении приоритетов людей в их отношении к совокупности опасных событий или процессов.

5.1.2. Опасность и риск

Рассмотрим простой пример, иллюстрирующий различие между опасностью и риском. Вождение автомобиля - это опасность, ее можно выразить с помощью той доли, которую составляет гибель людей в автомобильных авариях в общем количестве смертей, фиксируемых ежегодно в определенной стране. Так, в США шанс среднего американца погибнуть за рулем составляет примерно 3 % от числа всевозможных случающихся там смертей. Следовательно, американец, садясь за руль своей машины, подвергается опасности, а риск здесь - не только в том, что он может попасть в те самые три процента, которые статистическое ведомство США подсчитывает к концу текущего года. Надо еще учесть ущерб, связанный с аварийным состоянием автомобиля, потери страховой компании, расходы на похороны, моральный ущерб родственников и т.д. Риск выступает здесь количественной мерой, учитывающей не только вероятность опасности, но и конкретизированные последствия ее проявления.

Опасность - это угроза людям и всему тому, что представляет для них ценность. Опасность является вероятностной категорией, которая может меняться в пространстве и во времени. Под характеристикой опасности, связанной с конкретным событием или процессом, следует понимать вероятность проявления этого события или процесса в данном месте и в заданное время. Опасности различных событий или процессов сопоставляют путем усреднения вероятностей их проявления по пространственным и временным параметрам.

В ряде случаев пространственную и временную зависимость вероятности проявления опасности можно рассматривать отдельно друг от друга. Тогда, в соответствии с теоремой умножения вероятностей, вероятность опасности \(P \) можно представить в виде произведения:

\[
P = P_S P_T
\]

где \(P_S \) и \(P_T \) - соответственно вероятности опасности, зависящие от пространственных и временных характеристик.

В других случаях опасность проявляется в определенных обстоятельствах, при осуществлении совокупности некоторых событий \(S_1, S_2, \ldots, S_n \). Тогда ее вероятность может быть выражена с помощью формулы полной вероятности:
\[P = \sum P(G|S_i)P(S_i) \] (5.2)
где \(P(G|S_i) \) - условная вероятность опасности \(G \), т.е. вероятность, проявляющаяся при условии совершения некоторого события \(S_i \), \(P(S_i) \) - вероятность этого события.

Итак, риск, в отличие от опасности, нельзя рассматривать в отрыве от возможных последствий проявления данной опасности.

Риск - количественная мера опасности с учетом ее последствий. Последствия проявления опасности всегда приносят ущерб, который может быть экономическим, социальным, экологическим и т.д. Следовательно, оценка риска должна быть связана с оценкой ущерба. Чем больше ожидаемый ущерб, тем значительнее риск. Кроме того, риск будет тем больше, чем больше вероятность проявления соответствующей опасности. Поэтому риск \(R \) может быть определен как произведение вероятности опасности рассматриваемого события или процесса \(P \) на магнитуду ожидаемого ущерба \(Z \):

\[R = PZ. \] (5.3)

Таким образом, понятие "риск" объединяет два понятия - "вероятность опасности" и "ущерб".

5.1.3. Разновидности риска

В современной научной литературе рассматривается несколько разновидностей риска, каждая из которых имеет свои особенности. Имеются пять таких разновидностей [2]:

1. риски, угрожающие безопасности (safety risks);
2. риски, угрожающие здоровью (health risks);
3. риски, угрожающие состоянию среды обитания (environmental risks);
4. риски, угрожающие общественному благосостоянию (public welfare/goodwill risks);
5. финансовые риски (financial risks).

1) Риски, угрожающие безопасности, обычно характеризуются малыми вероятностями, но тяжелыми последствиями; они проявляются быстро, к ним, в частности, могут быть отнесены несчастные случаи на производстве.

2) Риски, угрожающие здоровью, напротив, обладают довольно высокой вероятностью и часто не имеют тяжелых последствий, многие из них проявляются с определенной задержкой.

3) Под рисками угрозы состоянию среды обитания понимают бесчисленное количество эффектов, мирады взаимодействий между популяциями, сообществами, экосистемами на микро- и макроуровнях, при наличии весьма существенных неопределенностей, как в самих эффектах, так и в их причинах.

4) Риски, угрожающие общественному благосостоянию, обусловлены тем, как общество воспринимает и оценивает деятельность данного объекта (промышлённого, сельскохозяйственного, военного и т.д.), в какой степени эта деятельность связана с рациональным использованием природных ресурсов, как она отражается на состоянии окружающей среды; негативное восприятие деятельности рассматриваемого объекта проявляется быстро и оказывается устойчивым.

5) Финансовые риски связаны с возможными потерями собственности или доходов, неполучением страховой премии или прибыли от инвестиций (включая инвестиции в природоохранные мероприятия).

По-видимому, распределение рисков по перечисленным разновидностям является условным. Очень часто риски, сопряженные с угрозой состоянию среды обитания, одновременно являются рисками для жизни и здоровья людей.

К настоящему времени сформировались шесть типов анализа риска [4], они обладают следующими особенностями.

1) **Анализ химического риска** охватывает риски, вызываемые неканцерогенными химическими веществами. Характерная черта химических рисков состоит в том, что они проявляются лишь в тех случаях, когда доза токсиканта превзойдет определенную величину, называемую пороговой. Цель этого анализа - найти значения предельно допустимых концентраций токсических веществ в воде, воздухе и почвах, для чего служат эксперименты, проводимые на животных.

2) **Анализ канцерогенного риска** рассматривается отдельно от других типов в силу важности и необходимости частого использования. Развитие злокачественных образований (раковых опухолей) может быть вызвано химическими веществами (канцерогенами) или ионизирующими излучениями. Канцерогенное действие ионизирующих излучений считается беспороговым. Анализ канцерогенных рисков основан на использовании вероятностно-статистических представлений.
3) Эпидемиологический анализ риска призван установить корреляцию (статистические зависимости) и причинные связи междуд свойствами источников риска и количеством индуцированных (стимулированных) заболеваний. Этот тип анализа выполняется, как правило, при исследовании профзаболеваний людей, но из-за нехватки данных допускает экстраполяцию результатов, получаемых в процессе опыта с животными.

4) Вероятностный анализ риска предназначен для того, чтобы обеспечить безопасность сложных и потенциально опасных технологических процессов. Был исторически первым типом анализа риска, после проведенных в США сложных расчетов вероятностей всевозможных аварий на реакторах атомных электростанций. Важная особенность этого типа анализа заключается в использовании так называемого метода деревьев, учитывающего все возможные отказы оборудования, технологических узлов и крупных блоков, причем каждый отказ характеризуется собственной вероятностью. Это позволяет не только рассчитать вероятности сложных событий, но и оценить их конкретные последствия (например, выброс в атмосферу определенного токсиканта или радионуклида).

5) Апостериорный анализ риска, в сферу которого входят как природные катастрофы (землетрясения, наводнения, оползни и т.д.), так и сопряженная с опасностью деятельность людей (аварии на транспорте, острое отравление пестицидами, заболевания раком в результате курения и т.п.). Термин «апостериорный» означает, что данный тип анализа использует результаты статистической обработки проявлений опасных событий и процессов в прошлом.

6) Качественный анализ риска приходится использовать в тех случаях, когда количественное рассмотрение опасного события или процесса оказывается практически невозможным. Например, очень трудно оценить количественным образом риски, обусловленные ливневыми дождями или глобальным изменением климата.

Все перечисленные виды анализа риска имеют непосредственное отношение к экологическому риску, под которым следует понимать совокупность рисков, угрожающих здоровью и жизни людей, и рисков угрозы состоянию среды обитания.

5.1.4. Особенности экологического риска

Агентство по защите окружающей среды США рассматривает экологические риски (ecological risks) отдельно от рисков, угрожающих здоровью людей (health risks). По мнению экспертов Агентства в начале 1990-х гг. самыми серьезными экологическими рисками были следующие:

- глобальное изменение климата;
- обеднение озонового слоя в стратосфере;
- изменение компонентов среды обитания;
- гибель популяций и потери в биологическом разнообразии.

Те же эксперты указали в качестве наиболее серьезных перечисленные ниже риски угрозы здоровью людей:

- загрязнение атмосферного воздуха (газами, аэрозолями);
- накопление радиоактивного газа в помещении;
- загрязнение воздуха в помещениях;
- загрязнение питьевой воды;
- присутствие химических загрязнителей (токсикантов) на рабочих местах;
- загрязнение почв и вод пестицидами;
- обеднение озонового слоя в стратосфере.

Сопоставление этих перечней показывает, что разделение рисков на экологические и риски угрозы здоровью является условным и неоднозначным. Видно, что при этом обеднение озонового слоя приходится включать в оба списка. Распространение пестицидов приняло такие масштабы (их следы обнаружены даже в тканях обитающих в Антарктиде пингвинов), что вызываемые пестицидами риск следует считать не только риском угрозы здоровью, но и экологическим. То же можно сказать и о загрязнении воздуха и воды, которое наблюдается повсеместно.

При проведении социологических опросов, направленных на выявление приоритетов в обеспечении людей состоянием среды обитания, экологические риски не отделяются от рисков, угрожающих здоровью. Ниже в виде ранжированного по значимости позиций списка приводятся результаты такого опроса, выполненного в 1990 г. в США (перечислены первые 20 рисков из более длинного списка; в скобках указан процент опрошенных, классифицировавших соответствующий экологический риск как «очень серьезный»).

1. Действующие полигоны захоронения опасных отходов (67%).
2. Недействующие (старые) полигоны захоронения опасных отходов (65 %).
3. Загрязнение воды стоками промышленных предприятий (63 %).
4. Химические токсикианты на рабочих местах (63 %).
5. Разливы нефти и нефтепродуктов (60 %).
6. Разрушение озонового слоя (60 %).
7. Аварии на атомных электростанциях (60 %).
8. Аварии в промышленности, приводящие к выбросам загрязнителей (58 %).
9. Излучение от радиоактивных отходов (58 %).
10. Загрязнение воздуха промышленными предприятиями (56 %).
11. Утечки из подземных хранилищ нефтепродуктов (55 %).
12. Загрязнение прибрежных вод (54 %).
13. Твердые отходы и мусор (53 %).
14. Риск от пестицидов для фермеров (52 %).
15. Загрязнение воды стоками сельскохозяйственных предприятий (51 %).
16. Загрязнение воды очистными сооружениями (50 %).
17. Загрязнение воздуха транспортными средствами (50 %).
18. Остаточные пестициды в пищевых продуктах (49 %).
19. Парниковый эффект (48 %).
20. Загрязнение питьевой воды (46 %).

Сравнение этого перечня с приведенным выше мнениями экспертов показывает, что простые люди и специалисты по-разному оценивают важность того или иного экологического риска. Так, опрос общественного мнения не выявил повышенной обеспокоенности ни глобальным изменением климата, ни воздействием радиоактивного газа (радона), ни сокращением биологического разнообразия. Эксперты и неспециалисты расходятся в оценках серьезности риска, вызываемого постоянно возрастающим количеством полигонах захоронения опасных отходов. Подобные различия отчасти обусловлены различием в информированности экспертов и обывателей, однако специальные исследования выявили и ряд иных причин.

В 1994 г. несколько международных организаций – Программа ООН по окружающей среде (UNEP), Организация объединенных наций по промышленному развитию (UNIDO), Международное агентство по атомной энергии (IAEA) и Всемирная организация здравоохранения (WHO) - разработали рекомендации по оценке и управлению рисками, связанными с угрозами здоровью людей и состоянию среды обитания в результате действия энергетических и промышленных комплексов. В состав этих рекомендаций входят основные признаки экологических рисков, связанных с угрозами здоровью и жизни людей и состоянию среды обитания, они перечислены в табл. 5.1.

Таблица 5.1. Основные признаки экологических рисков, связанных с угрозой здоровью людей и состоянию среды обитания

<table>
<thead>
<tr>
<th>Категории</th>
<th>Для людей</th>
<th>Для среды обитания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Характер действия источника риска</td>
<td>Непрерывный</td>
<td>Разовый (аварийный)</td>
</tr>
<tr>
<td></td>
<td>Развальный</td>
<td>Разовый (аварийный)</td>
</tr>
<tr>
<td>Контингент (группы риска)</td>
<td>Население данной местности</td>
<td>Персонал предприятия</td>
</tr>
<tr>
<td>Продолжительность действия</td>
<td>Краткосрочное</td>
<td>Средней длительности.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Длительное</td>
</tr>
<tr>
<td>Последствия</td>
<td>По степени тяжести:</td>
<td>По распространению:</td>
</tr>
<tr>
<td></td>
<td>фатальные (риски смерти),</td>
<td>локальные</td>
</tr>
<tr>
<td></td>
<td>нефатальные (риски травмы</td>
<td>региональные</td>
</tr>
<tr>
<td></td>
<td>болезни и т.п.)</td>
<td>глобальные</td>
</tr>
<tr>
<td></td>
<td>По времени проявления:</td>
<td>По продолжительности:</td>
</tr>
<tr>
<td></td>
<td>немедленные</td>
<td>краткосрочные</td>
</tr>
<tr>
<td></td>
<td>отдаленные</td>
<td>средней длительности</td>
</tr>
<tr>
<td></td>
<td></td>
<td>длительные</td>
</tr>
</tbody>
</table>

Таблица показывает, что экологические риски, связанные с угрозой здоровью и жизни людей, одной стороны, и с угрозой состояния среды обитания, с другой, характеризуются как одинаковыми, так и различными признаками. И те, и другие риски могут происходить от источников непрерывного или разового действия.

К источникам непрерывного действия относятся вредные выбросы от стационарных установок, а также от транспортных систем. К ним же следует отнести результаты использования в сельском хозяйстве удобрений, инсектицидов и гербицидов. Непрерывными поставщиками загрязнителей в среду обитания являются места сосредоточения промышленных и бытовых отходов.
(отвалы пород вблизи угольных шахт, хвостохранилища горнорудных предприятий, городские свалки и т.п.).

Разовыми источниками являются аварийные выбросы вредных веществ в результате взрывов или других аварийных ситуаций на промышленных объектах, а также серьезные дорожно-транспортные происшествия при перевозке ядовитых веществ. Причинами разовых выбросов могут быть, разумеется, и природные катастрофы (землетрясения и оползни, бури и ураганы, наводнения и вулканические извержения).

Вне зависимости от характера действия источника опасности, результатом его проявления выступает ущерб, который наносится людям и окружающей среде. Это требует одновременного рассмотрения обоих видов экологического риска. Вместе с тем, во многих случаях экологические риски, связанные с угрозой здоровью и жизни людей необходимо рассматривать отдельно от рисков, обусловленных угрозой состоянию среды обитания.

По данным американского Общества экологической токсикологии и химии окружающей среды SET AC (Society of Environmental Toxicology and Chemistry) в период с 1980 по 1993 г. основной вклад в техногенную нагрузку на среду обитания вносили тяжелые металлы (к которым обычно относятся также мышьяк, хотя он является неметаллом) органические токсинанты (прежде всего поликлинические ароматические углеводороды типа бензола) и пестициды. Об относительной роли каждой группы источников экологической опасности и риска в создании этой нагрузки можно судить по данным табл. 5.2 [2].

<table>
<thead>
<tr>
<th>Источники экологической опасности и риска</th>
<th>Отн.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Тяжелые металлы (Hg, Cd, Se, Ni, As и др.)</td>
<td>28</td>
</tr>
<tr>
<td>2. Органические токсинанты (поликлинические ароматические углеводороды и др.)</td>
<td>27</td>
</tr>
<tr>
<td>3. Смешанные отходы (неорганические и органические)</td>
<td>3</td>
</tr>
<tr>
<td>4. Пестициды</td>
<td>20</td>
</tr>
<tr>
<td>5. Радионуклиды (Cs-137 и др.)</td>
<td>15</td>
</tr>
<tr>
<td>6. Газы (диоксид серы, оксид азота, озон и др.)</td>
<td>6</td>
</tr>
<tr>
<td>7. Микроорганизмы, созданные генной инженерией</td>
<td>3</td>
</tr>
</tbody>
</table>

Таблица 5.3. Распределение техногенной нагрузки по компонентам среды обитания (по данным SETAC)

<table>
<thead>
<tr>
<th>Компонент среды обитания</th>
<th>Отн. доя, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Поверхностные воды</td>
<td>53</td>
</tr>
<tr>
<td>Осадки</td>
<td>32</td>
</tr>
<tr>
<td>Почвы</td>
<td>12</td>
</tr>
<tr>
<td>Горные породы (литосфера)</td>
<td>9</td>
</tr>
<tr>
<td>Грунтовые воды</td>
<td>7</td>
</tr>
<tr>
<td>Воздух</td>
<td>3</td>
</tr>
</tbody>
</table>

5.2. «Общество риска» и особенности принятия рискованных решений

5.2.1. Социологическая теория "общества риска"

Сравнительно недавно, в середине 1980-х гг. появилась новая социологическая теория современного общества, автором которой является немецкий ученый Ульрих Бек. Согласно этой теории, в последние тридцать лет человечество вступило в новую фазу своего развития, которую следует называть обществом риска [1]. Общество риска - это постиндустриальная форма, от индустриального общества она отличается рядом коренных особенностей. Главное отличие состоит в том, что если для индустриального общества характерно распределение благ, то для общества риска - распределение опасностей и обусловленных ими рисков.

Эволюция индустриального общества сопровождалась появлением всех новых и новых факторов, улучшающих жизнь людей
(рост урожайности сельскохозяйственных культур, автоматизация производственных процессов, развитие средств транспорта и связи, прогресс в медицине и фармакологии и т.д.). Иначе говоря, возникало и распределялось между членами общества то, что приносило, в целом, хорошее. В обществе риска складывается иная ситуация: по мере его развития появляется все больше плохого, и это плохое распределяется между людьми. Сокращение биологического разнообразия, загрязнение воздуха и воды химикатами, постоянный рост числа поступающих в среду обитания токсинов, истощение озowego слоя, тенденция к изменению климата - все это привело и продолжает приводить к созданию разнообразных опасностей и рисков. Таким образом, в индустриальном обществе производились и распределялись главным образом положительные достижения, и в обществе риска, которое «врастает» в индустриальное, накапливаются и распределяются между членами негативные следствия развития последнего.

Конечно, и ранее в индустриальном обществе имели место опасные события и процессы. Однако опасности, проявляющиеся в обществе риска, принципиально отличаются от прежних тем, что они не имеют границ ни в пространстве, ни во времени. Для этих опасностей не существует государственных границ - можно привести немало примеров экологического риска, причины которого находятся в одних странах, а места проявления - в других. Так, в Канаде весьма существенно влияние промышленных выбросов предприятий США, а в странах Скандинавии - Германии. В этом смысле человечество приближается к общемировому обществу риска.

Отсутствие границ во времени означает, что экологический риск распространяется на будущее поколения людей. Сейчас при захоронении ядовитых отходов часто никто не знает, каковы последствия воздействия на людей и на биосферу вообще того или иного токсинанта, эти проблемы придется решать в будущем. Еще больше неопределенностей в случае захоронения радиоактивных отходов: среди них есть целый ряд долго живущих радионуклидов, распад которых будет длисться не одну тысячу лет. Согласно концепции Бека, для того, чтобы появилось общество риска, необходимо два объективных условия. Во-первых, оно возникает, прежде всего там, где материальные потребности людей могут быть в значительной степени удовлетворены (создано «общество потребления»), как в результате научно-технического прогресса, так и вследствие принятия мер социальной защиты. Во-вторых, темпы и степень развития производительных сил должны быть такими, что наработка и активизация побочных, существенно отрицательных явлений и процессов приобретает невиданные до того масштабы. Для индустриального (классового) общества характерно главное противоречие - между трудом и капиталом, оно выражается в неравном распределении благ. Социальные институты капиталистического общества пытаются обосновать и узаконить это неравенство. Обществу риска приходится решать иные проблемы:

- как предотвратить, ограничить или свести к минимуму опасности и риски, которые все в большей степени сопровождают постиндустриальное развитие?
- где, когда и как проявятся пока еще скрытые (латентные) негативные эффекты? (предсказание будущих рисков – футуровологический аспект теории рисков)

- каким образом вести управление рисками с целью такого их распределения, при котором, с одной стороны, не тормозился бы научно-технический прогресс, а с другой - соблюдались бы требования (экологические, медицинские, психологические и социальные) приемлемости рисков?

Ульрих Бек подчеркивает, что в новых условиях изменился смысл самого понятия «риски». Риск играл большую роль на протяжении всей истории человечества. Риску подвергалась любой, кто начинал новую для людей деятельность, особенно если вспомнить, к примеру, первооткрывателей не известных ранее стран или целых континентов. Но эти риски, во-первых, были добровольными, и, во-вторых, индивидуальными (персональными). Так, Колумб знал, что рискует собственной жизнью и жизнью своих спутников, но он считал это допустимым риском, и в его власти было принимать рискованные решения. В новых условиях нависшие над природой и человечеством опасности лишают риски индивидуального характера, экологические риски становятся глобальными. Кроме того, экологические риски все труднее понять и осознать - сущность их действия заключена в загадочных для простого человека химических (токсины) или физических (электромагнитные поля) формах. Ещё одна важнейшая особенность экологических рисков обусловлена количеством новых технологий. Действительно, вводимых посредств-
вом их в биосферу веществ так много, что это делает практически невозможной оценку всех вызываемых последствий.

Подобно классовому обществу, общество риска поляризовано, но это поляризация "наоборот". В классовом обществе богатства и блага сосредоточены на вершине социальной пирамиды, а в обществе риска - внизу, в ее основе. Можно сказать, что бедность как бы притягивает к себе риск. Это касается и экологических рисков - компания и фирмы развитых стран выносят вредное производство в бедные страны Азии, Африки и Южной Америки. Казалось бы, богатые классы могут "откупиться" от экологического риска. Однако в обществе риска действует так называемый "эффект бумеранга". Для экологических катастроф не существует ни государственных границ, ни классовых различий. Радиоактивные осадки в результате испытаний ядерного оружия или аварий на АЭС, кислотные дожди, изменения климата в равной степени действуют как на богатых, так и на бедных. Что же касается "экспорта вредных производств", то "эффект бумеранга" проявляется и здесь. Выращенные в бедных странах культуры - кофе, какао, фрукты - все в больший степени оказываются загрязненными (как пестицидами, так и токсинами, выброшенными из труб химических заводов). Ясно, что ввоз таких продуктов в страны Запада сопровождается увеличением риска для их населения. Таким образом, рано или поздно риску подвергаются и те, кто вначале извлекал пользу из развития опасных технологий. Наиходящий сценарий будущего человечества, как известно, включает в себя ракетно-ядерную войну, в которой не будет победителей. Пессимистические варианты эволюции общества риска в определенной мере схожи с этим сценарием, так как после глобальных экологических катастроф на Земле не останется ни "экологических преступников", ни их жертв.

Как и любая общественная форма, общество риска характеризуется собственными противоречиями и социальными конфликтами. Сейчас трудно сказать, по какому пути пойдет его эволюция. В отличие от индустриального общества, где настоящее во многом определяется прошлым, про общество риска можно сказать, что его настоящее зависит от будущего. Это означает, что требуют учета и рассмотрения все опасные последствия современных технологий и обусловленных ими рисков. Ульрих Бек полагает, что должна принципиально измениться мотивация поведения людей, живущих в обществе риска. На заре развития классового (индустриального) общества его движущую силу можно было выразить одной фразой: «Я голоден!». Экологические опасности наших дней позволяют перефразировать ее иначе: "Я боюсь!". Для классового общества характерна мечта: "каждый может и должен получить свою "доль пирога", в обществе риска эта мечта (которая может стать утопической) формулируется иначе: "каждый должен быть спасен от отравления". В индустриальном обществе трудящиеся добились перераспределения материальных и социальных благ в результате солидарных действий, направленных на удовлетворение их потребностей. В обществе риска на смену солидарности потребностей должна прийти солидарность тревоги, которая может стать важной политической силой. На это указывает, в частности, успех партий "зеленных" в странах Западной Европы и антиядерного движения в США.

В данном обзоре литературы нами рассмотрена в целом проблема экологических и прочих рисков сопровождающих человечество на данном постиндустриальном этапе развития. Далее обратимся к основным теоретическим положениям теории экологических рисков.

5.2.2. Основные теоретические сведения
Понятие риска является многоплановым, поэтому в научной литературе используются различные производные этого понятия в зависимости от области применения, стадии анализа опасности.

Излагаемая ниже классификация рисков не претендует на полноту и строгость и приведена для того, чтобы сосредоточить в дальнейшем внимание на подходах и методах оценки рисков, связанных с оценкой опасности, управлением безопасностью технических систем и объектов.

Начальную классификацию рисков можно провести в зависимости от основной причины возникновения рисков: природные риски - риски, связанные с проявлением стихийных сил природы: землетрясениями, наводнениями, подтоплениями, бурами и т.п.; техногенные риски - риски, связанные с опасностями, исходящими от технических объектов; экологические риски - риски, связанные с загрязнением окружающей среды;
коммерческие риски - риски, связанные с опасностью потерь в результате финансово-хозяйственной деятельности.

С точки зрения применения понятия риска при его анализе и управлении техногенной безопасностью важными категориями являются:

индивидуальный риск - риск, которому подвергается индивидуум в результате воздействия исследуемых факторов опасности;

потенциально территориальный риск - пространственное распределение частоты реализации негативного воздействия определенного уровня;

социальный риск - зависимость частоты событий, в которых пострадало на том или ином уровне число людей больше определенного, от этого большого числа людей;

коллективный риск - ожидаемое число смертельно травмированных в результате возможных аварий за определенный период времени;

приемлемый риск - уровень риска, с которым общество в целом готово мириться ради получения определенных благ или выгод в результате своей деятельности.

Классификации рисков в других областях и соответственно категории для их описания, например в страховой деятельности, могут, естественно, отличаться от классификации, приведенной выше.

В первую очередь, риск – это опасность будущего ущерба или опасность возникновения неблагоприятных последствий рассматриваемого события. Иначе под риском подразумевают возможность или вероятность неблагоприятного события или процесса.

$P = \frac{n}{N}$ - статистическое определение риска, где n - число пострадавших из N числа попавших под риск.

$R = P \cdot Y$, где P - вероятность аварии, Y - стоимость ущерба.

Одной из наиболее часто употребляемых характеристик опасности является индивидуальный риск – вероятность (или частота) поражения отдельного индивидуума в результате воздействия исследуемых факторов опасности при реализации неблагоприятного случайного события.

Например, для целей радиационной безопасности при облучении в течение года индивидуальный риск RI сокращения длительности периода полноценной жизни в результате возникновения тяжелых последствий от детерминированных эффектов консервативно принимается равным:

$RI = P \cdot 10^{-4}$,

где $P_{i,D > D}$ – вероятность для i-го индивидуума быть облученным дозой $D > D$ при обращении с источником излучения в течение года; D – пороговая доза для детерминированного эффекта.

В общем случае индивидуальный риск на рассматриваемой территории от некоторой опасности или угрозы характеризуется вероятностью смерти произвольного лица из населения за интервал времени, равный 1 году. Риск определяется статистическим либо вероятностным (с помощью математических моделей) методом. Так, если имеется достаточная статистика,

$RI = \frac{n}{N}$,

где n - число смертей в год по рассматриваемой причине; N - численность населения на рассматриваемой территории в оцениваемом году.

Этот вид риска рассматривается в качестве первичного и основного понятия, во-первых, в связи с приоритетом человеческой жизни как высшей ценности и, во-вторых, в связи с тем, что именно индивидуальный риск может быть оценен по большим выборкам с достаточной степенью достоверности, что позволяет определять другие важные категории риска (например, потенциальный территориальный) при анализе техногенных опасностей и осуществлять установление приемлемого и неприемлемого уровней риска.

Обычно индивидуальный риск измеряется вероятностью гибели в исчислении на одного человека в год. В случае если оценивается риск для какой-либо группы людей определенной профессии или специального рода деятельности, связанных с повышенной опасностью, целесообразно их риск относить к одному часу работы или одному технологическому циклу.

Аналогично могут быть определены индивидуальные риски увечий, заболеваний, потери трудоспособности и т.п. Если говорится, что индивидуальный риск для пассажиров гражданской авиации составляет 10^{-4}, то в статистическом плане это означает, что следует ожидать один смертельный исход в результате несчастного случая, связанного с отказом на самолете, на 10 тыс. пассажиров в год.
На основании того, что индивидуальный риск характеризуется одним числовым значением и является универсальной характеристикой опасности для человека, на практике имеют место многочисленные попытки нормирования уровней приемлемого индивидуального риска. Однако опыты анализов риска различных производств показывают, что оценки индивидуального риска имеют существенный разброс, что связано с неопределенностью исходных данных (место расположения, профессия, состояние облученности и защищенности и т.д.). Поэтому уровень приемлемого индивидуального риска нормативно или законодательно закреплен лишь в некоторых странах (например, в Голландии - 10^{-6}/год; в России, согласно некоторым нормативным документам, - от 10^{-4} до 10^{-6}/год) [1,2].

Количественной интегральной мерой опасности является коллективный риск, определяющий масштаб ожидаемых последствий для людей от потенциальных аварий или других негативных воздействий:

$$RN = R \cdot N,$$ \hspace{1cm} (5.5)

где N - общее число людей, подвергающихся потенциальному негативному воздействию.

Фактически коллективный риск определяет ожидаемое число смертельных исходов в результате аварий на рассматриваемой территории за определенный период времени. Наиболее удобно пользоваться этим понятием для сравнения различных территорий хозяйственной деятельности, однако для разработки мер безопасности применение коллективного риска неэффективно, так как основной ущерб от несчастных случаев как результатов неблагоприятных событий зачастую не рассматривается.

Индивидуальный и коллективный риски могут быть переведены в сферу экономических и финансовых категорий, если установить стоимость человеческой жизни и использовать математическое определение риска (см. формулу 5.4). Такой подход широко обсуждается, вызывая возражения определенного круга ученых, которые считают человеческую жизнь бесценной и все финансовые дискуссии на этой почве недопустимыми. Однако на практике неизбежно возникает необходимость стоимостной оценки человеческой жизни именно с целью обеспечения безопасности людей. В большинстве промышленно развитых стран этот вопрос решается путем страхования индивидуальных рисков, в том числе смертельных.

5.3. Оценка и прогноз экологических рисков от радиационного воздействия на человека

5.3.1. Теоретические сведения о радиационных рисках [2]

Риск от внешнего облучения можно оценить, умножив мощность дозы P (мЗв/час) внешнего облучения на время T (час).

То есть эффективная доза равна:

$$H = P \cdot T$$ \hspace{1cm} (5.6)

В году примерно 8760 часов.

Расчет дозы и риска, связанной с внутренним облучением при поступлении радиоактивности с воздухом и/или с пищей и водой, учитывает активность радионуклида.

Пусть a - удельная активность некоторого рассматриваемого радионуклина в воздухе, воде или пище, то полная активность этого радионуклина попавшего в организм человека за время t (количество лет) будет равно:

$$A = a \cdot M \cdot t \text{ (Бк)},$$ \hspace{1cm} (5.7)

где M - масса воздуха, воды и/или пищи поступившая в организм человека за год.

Воззванная этой активностью эффективная доза внутреннего облучения (H) составит:

$$H = A \cdot E \text{ (Зв)},$$ \hspace{1cm} (5.8)

где E - дозовый коэффициент данного радионуклида.

Дозовые коэффициенты или дозовые цены представлены в таблице 5.4 (МАГАТЭ).

После вычисления величины дозы внутреннего облучения H можно рассчитать значение индивидуального радиационного риска r по формуле:

$$r = H \cdot r_E$$ \hspace{1cm} (5.9)

где r_E коэффициент индивидуального радиационного риска.

Этот коэффициент характеризует сокращение длительности периода полноценной жизни в среднем на $\beta = 15$ лет на один стохастический случай смертельного заболевания.

Приняты такие значения:

- $r_E = 5,6 \cdot 10^{-2}$ чел^{-1} Зв^{-1}$ - для производственного облучения (для персонала);
- $r_E = 7,3 \cdot 10^{-2}$ чел^{-1} Зв^{-1}$ - для населения.
Таблица 5.4. Дозовые коэффициенты или дозовые цены разных радионуклидов

<table>
<thead>
<tr>
<th>Радионуклиды</th>
<th>Период полураспада (годы)</th>
<th>Поступление с воздухом (Зв/Бк)</th>
<th>Поступление с водой и пищей (Зв/Бк)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тритий ³⁵H</td>
<td>12,3</td>
<td>2,7·10⁻¹⁰</td>
<td>4,8·10⁻¹¹</td>
</tr>
<tr>
<td>Углерод ¹³C</td>
<td>5730,0</td>
<td>2,5·10⁻⁴</td>
<td>1,6·10⁻⁴</td>
</tr>
<tr>
<td>Калий ⁴⁰K</td>
<td>1,28·10⁹</td>
<td>1,7·10⁻⁵</td>
<td>4,2·10⁻⁸</td>
</tr>
<tr>
<td>Кобальт ⁶⁰Co</td>
<td>5,27</td>
<td>1,2·10⁻⁸</td>
<td>2,7·10⁻⁸</td>
</tr>
<tr>
<td>Строций ⁵²Sr</td>
<td>29,1</td>
<td>5,0·10⁻⁵</td>
<td>8,0·10⁻⁸</td>
</tr>
<tr>
<td>Цезий ¹³⁷Cs</td>
<td>30,0</td>
<td>4,6·10⁻⁷</td>
<td>1,3·10⁻⁸</td>
</tr>
<tr>
<td>Радий ²²⁶Ra</td>
<td>1600,0</td>
<td>4,5·10⁻⁹</td>
<td>1,5·10⁻⁹</td>
</tr>
<tr>
<td>Уран ²³⁵U</td>
<td>4,47·10⁹</td>
<td>7,4·10⁻⁶</td>
<td>1,2·10⁻⁷</td>
</tr>
<tr>
<td>Торий ²³⁸Th</td>
<td>1,4·10⁹</td>
<td>2,5·10⁻⁴</td>
<td>4,5·10⁻⁵</td>
</tr>
<tr>
<td>Плутоний ²³⁹Pu</td>
<td>2,4·10⁻⁴</td>
<td>5,0·10⁻⁶</td>
<td>4,2·10⁻⁷</td>
</tr>
<tr>
<td>Америций ²⁴³Am</td>
<td>432,0</td>
<td>4,2·10⁻⁸</td>
<td>3,7·10⁻⁷</td>
</tr>
</tbody>
</table>

Индивидуальный риск пренебрежим, если r не превосходит 10⁶ чел⁻¹ год⁻¹.

Верхняя граница допустимого индивидуального радиационного риска = 5·10⁻⁵ чел⁻¹ год⁻¹. Значения r превышающие этот уровень, следует считать недопустимыми.

Для расчета коллективного риска нужно сначала определить коллективную дозу облучения:

$$K = N \cdot H \text{ (чел. Зв)}$$

(5.10)

Коллективный радиационный риск равен:

$$R = r \cdot K$$

(5.11)

Он показывает количество случаев проявления стихастических (соматических – канцерогенных) и генетических (наследственных) серьезных, как правило, смертельных заболеваний.

5.4. Теория радиоемкости и надежности при оценке экологических рисков в экосистемах

Теоретическая экология и радиоэкология не имела выбора моделей и параметров, пригодных для оценок и расчетов радиоэкологических процессов и рисков в экосистемах разного типа. Кыптымская (Россия, 1968) и, особенно, Чернобыльская(1986) и авария на Фукусиме-1 (2011 г.) авария показали четкую необходимость развития теоретических исследований в этой области. Доминируючи исследования по мониторингу радионуклидных загрязнений в экосистемах, конечно, необходимы, но не достаточные, и без использования широкого перечня теоретических моделей трудно сделать заметные обобщения для продуктивного использования большого количества существующих данных по мониторингу. Поэтому возникает необходимость создания подходов для оценивания оценки состояния биоты экосистем при действии разных факторов влияния физической и химической природы. Эту роль может выполнить развиваемая нами теория и модели радиоемкости экосистем.

5.4.1. Теория и модели радиоемкости в современной радиоэкологии.

Представление о факторе радиоемкости, как уже упоминалось выше, предложенное Аге и Кабородыным в 1960 г. [5], положено нами в основу нашей новой радиоэкологической концепции. Через поведение параметра радиоемкости можно оценить состояние биоты экосистемы. Следует повторить, что радиоемкость определяется, как граничное количество радионуклидов, которое по своим дозовым влияниям еще не способно нарушить основные функции биоты: способность сохранить биомассу и кондиционировать среди существования. Построенные модели радиоемкости экосистем и предложенные параметры способны адекватно реагировать на влияние различных факторов (у-облучение, тяжелые металлы и т.д.). По результатам проведенных опытов предложенные параметры могут четко отображать влияние факторов на биоту и опережать по своим реагированием биологических ростовые показатели у растений. Установлено, что реакция параметров радиоемкости может служить в качестве экологического градусника, который измеряет состояние и благополучие биоты, и быть мерой для эквидозиметрической оценки влияния радиационного и химического факторов [6].

Разработанные и построенные нами модели для оценки параметров радиоемкости разных типов экосистем (наземных, водных, лесных, горных, луговых и урбэкосистем) можно использовать как универсальный подход к моделированию радиоемкости разного типа экосистем, описывать самые разнообразные экосистемы, и сравнивать их по этим показателям [6; 7].

Разработаны модель и параметр для оценки синергизма действия комбинированных факторов. Показано, что в динамике
роста биоты в экосистемах характер взаимодействия разных факторов изменяются от синергизма до антагонизма. Нами была показана ведущая роль процессов восстановления при действии на биоту радиационного и химического факторов [7].

После Чернобыльской аварии такой трассер, как 137Cs, является неизбежным спутником в жизни биологических объектов практически всех экосистем Украины. Исследования показали, что распределение и перераспределение данного трассера в водных и наземных экосистемах четко реагирует на все существенные внешние факторы влияния (климат) паводки, контрымеры и т.д.), а также на разные типы загрязнителей (тепловые сбросы, дозы облучения, химические поллютанты и т.п.). При этом было показано, что каждое существенное влияние на экосистему не может не отобразиться на распределении трассера и на параметрах радиоемкости по нему. Такой подход, который развивается в наших исследованиях, позволит использовать параметры радиоемкости для эквидозиметрической унифицированной оценки действия самых разных факторов на биоту экосистем. На этой основе нами предложен метод экологического нормирования для определения допустимых уровней влияния поллютантов на биоту экосистем. Фактор радиоемкости – определяет долю радионуклидов, которые удерживаются в биотических и абиотических компонентах экосистемы [8].

Основным методом исследования является создание моделей для оценки синергизма действия на биоту разных факторов физической и химической природы. Основные параметры для модели получены нами в экспериментальных исследованиях на водной культуре растений кукурузы и из полевых натурных наблюдений, которые используются для оценки параметров скоростей перехода поллютантов между камерами экосистемы.

5.4.2. Модель и параметр для оценки синергизма при действии комбинированных факторов на уровне экосистем

Показано, что в динамике роста биоты в экосистемах характер взаимодействия разных факторов изменяется от синергизма до антагонизма. Показана ведущая роль процессов восстановления при действии на биоту радиационного и химического факторов [9].

Проанализировано возможное влияние разных факторов (радиации – гамма - облучения и химического фактора – внесения соли тяжелого металла кадмия) на параметр радиоемкости упрощенной экосистемы - водной культуры растений кукурузы. Речь идет об определении меры количественной оценки синергизма или антисинергизма действия разных факторов на биоту экосистемы.

Определем коэффициент синергизма как (5.12):

\[P = \frac{S_{\text{Cd+obs}}}{S_{\text{Cd}} \cdot S_{\text{obs}}} \cdot S_0, \]

где \(S_0 \) – отношение факторов радиоемкости биоты контрольного варианта (каждое из них определяется как отношение скоростей поглощения трассера к скорости его оттока в воду, в данном случае для контрольного варианта); \(S_{\text{Cd+obs}} \) – это отношение при комбинированном влиянии радиации и токсичного металла; \(S_{\text{Cd}} \) и \(S_{\text{obs}} \) – отношение факторов радиоемкости для независимых влияний каждого из факторов. Если \(P = 1 \), то понятно, что никакого синергизма в действии разных факторов на параметры радиоемкости нет. Если \(P > 1 \), то это может свидетельствовать о существенном вкладе синергизма, то есть усиления действия двух факторов в сравнении с действием отдельно каждого из этих факторов. Если же \(P < 1 \), то мы имеем дело с антисинергизмом, то есть с явлением, когда один фактор уменьшает негативное действие второго фактора, или наоборот.

Таким образом, нами разработана схема и введен параметр для оценки степени синергизма разных факторов через вышеупомянутый коэффициент – \(P \). Как уже было показано выше, когда время наблюдения велико, то можно рассчитывать и оценивать фактор радиоемкости для биоты и для ОС таким образом.

Фактор экологической емкости и радиоемкости конкретного элемента экосистемы и/или ландшафта (\(F_j \)) определяется при использовании камерных моделей следующим образом (5.12):

\[F_j = \frac{\sum a_{ij}}{(a_{ij} + \sum a_{ij})} \]

где \(\sum a_{ij} \) – сумма скоростей перехода поллютантов и трассеров из разных составляющих экосистемы в конкретный элемент экосистемы \(j \), согласно, камерной модели, \(a_{ij} \) – сумма скоростей перехода поллютантов и трассеров из исследуемой камеры \(j \) – в другие составляющие экосистемы, которые сопряжены с ними.

Показано, что соотношение скоростей поглощения и оттока трассеров и элемента минерального питания - калия пропорцио-
налого биомассе биоты и коэффициенту накопления в данном опыте в системе «вода – биота» [7,10].

5.4.3. Моделирование и теоретический анализ радиоемкости ландшафтов

Исследования указывают, что скорость переноса радионуклидов в ландшафте определяется, в основном, некоторыми характеристиками исходного полигона и структуры его рельефа. Используя параметры, которые управляют перераспределением радионуклидов в ландшафте, нами были построены карты динамики загрязнения ландшафта Cs-137, и карта перераспределения радионуклидов через 10, 20 и 30 лет после аварии [10].

Метод использования аналитической ГИС технологии в современной радиоэкологии может быть плодотворно использован в общей экологии. Предложенные тут методы и методики радиоэкологических исследований на основе теории и моделей надежности и радиоемкости биоты экосистем, могут быть с успехом использованы при решении разных проблем современной экологии.

Это, прежде всего, проблема создания системы экологического нормирования вредных факторов через реакции той биоты, которая может получить наибольшее вредное влияние при внесении в экосистемы самых разных поллютантов.

На этой теоретической базе могут быть созданы эффективные методы оценок экологических рисков при влиянии на биоту физических, химических и других загрязнителей.

Использование радиоактивных трассеров (например, Cs-137), позволяет на основе теории и моделей надежности и радиоемкости экосистем исследовать фундаментальные характеристики биоты и устанавливать закономерности распределения и перераспределения поллютантов через поведение радиоактивных трассеров, которые были «щедро» разбросаны после Чернобыльской аварии на территории Украины, Беларуси и России.

5.4.4. Исследование и оценка надежности и экологических рисков при транспорте радионуклидов в локальной агрокосистеме

Полученные нами результаты по оценке распределения и перераспределения радионуклидов в агрокосистеме (на примере с. Галузя, Вольнская область) показали заметную динамику формирования дозовых нагрузок на людей. Для оценки и прогноза таких процессов нами предложено использовать модели и теорию надежности. Для этого агрокосистема рассматривается как система транспорта радионуклидов от почвы к человеку. Нами предложены количественные методы оценки надежности отдельных элементов агрокосистемы и агрокосистемы в целом. Данный метод и модели позволили по-новому взглянуть на проблему экологической безопасности человека и рассмотреть проблемы применения защитных контрмер.

Исследования радиоэкологических процессов в агрокосистемах особенно важны для оценки и прогноза их экологической безопасности для населения, особенно при формировании дозовых нагрузок. Кроме использованного нами ранее метода камерных моделей, считаем необходимым разработать подходы к более общей оценке надежности и устойчивости агрокосистемы. Речь идет об анализе агрокосистемы, как системы транспорта радионуклидов от почвы к человеку, средствах и методах модификации данных процессов.

Наша задача в этом разделе, применить эффективный анализ к агрокосистеме, как системе транспорта радионуклидов от ОС к человеку, используя теорию и модели надежности. Реализация данной задачи позволит значительно расширить круг средств теоретической радиоэкологии и может существенно дополнить существующий метод камерных моделей.

Разработанные нами модели и теория радиоемкости экосистем позволяет ввести адекватный параметр – фактор радиоемкости – для определения состояния биоты экосистемы [6].

Радиоемкость – лимит радионуклидного загрязнения биоты экосистемы, при котором не наблюдаются серьезные изменения ее функционирования. При превышении этого лимита могут наблюдаться угнетение и/или подавление роста биоты. Фактор радиоемкости определяется, как часть радионуклидного загрязнения, способного накапливаться в той или иной части (компоненте) экосистемы, без нарушения ее структуры. Экспериментальными и теоретическими исследованиями установлено, что чем выше параметр радиоемкости биоты в экосистеме, тем выше уровень благополучия и надежности биоты в ней. В частности, в исследованиях с растительными экосистемами нами показано, что способность
биоты накапливать и удерживать радионуклидный трассер 137Cs, аналог минерального элемента питания растений калия, отображает устойчивость и надежность биоты данной экосистемы. Установлено, что снижение показателя радиоемкости биоты в растительной экосистеме при влиянии химических поллютантов и при гамма-облучении растений, четко отображает снижение благополучия биоты и надежности экосистемы.

Таким образом, можно утверждать, что параметр радиоемкости способен выступать в качестве меры надежности каждого элемента экосистемы, а также экосистемы в целом. Чем выше фактор радиоемкости, и/или вероятность удержания трассера в каждом из элементов экосистемы, тем выше надежность составляющих элементов экосистемы. Используя эти параметры надежности элементов экосистемы, и зная структуру конкретной экосистемы, мы имеем возможность адекватно оценивать надежность всей экосистемы через ее способность обеспечивать распределение и перераспределение трассера, которые отображают ее устойчивое состояние [10].

Исходя из проведенных теоретических исследований, можно считать, что, используя параметры скоростей обмена радионуклидов между камерами (a_{ij} и a_{ji}), можно оценивать надежность компонента экосистемы, как элемента системы транспорта радионуклидов по камерам по формуле (см. 5.12).

Таким образом, мы оцениваем надежность i-того элемента экосистемы по его способности удерживать радионуклиды, которые попадают в него. Далее, зная надежностную схему - структуру обеспечения надежности транспорта радионуклидов от компонентов экосистемы к человеку, на основе модели надежности можно оценить надежность всей системы транспорта радионуклидов от экосистемы к людям.

5.4.5. Оценка надежности и экологических рисков в избранных экосистемах

5.4.5.1. Надежность и формирование экологических рисков в склоновой экосистеме

Блок-схема типовой склоновой экосистемы представлена на рис 5.1. В качестве прототипа выбран склон на р. Уж в 30-км зоне ЧАЭС.

На основе литературных и натурных данных, нами рассчитаны параметры скоростей переходов между камерами данного прототипа склоновой экосистемы (таблица 5.4.)[10].
Таблица 5.4. Значения коэффициентов перехода радионуклидов из камеры в камеру в склоновой экосистеме.

<table>
<thead>
<tr>
<th>(a_{ij})</th>
<th>Минимальные</th>
<th>Средние</th>
<th>Максимальные</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{31})</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>(a_{32})</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>(a_{43})</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
</tr>
<tr>
<td>(a_{54})</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>(a_{65})</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>(a_{67})</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>(a_{68})</td>
<td>0.04</td>
<td>0.07</td>
<td>0.1</td>
</tr>
<tr>
<td>(a_{76})</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>(a_{86})</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>(a_{87})</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>(a_{84})</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>(a_{96})</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Данные параметров скоростей перехода между камерами склоновой экосистемы (включены в систему дифференциальных уравнений, описывающих рассматриваемую склоновую экосистему) (5.13.) Для расчетов использовали средние значения скоростей перехода (см. таблица 5.4.).

Перенос радионуклидов из одной камеры в другую происходит по законам кинетики первого порядка, его описывают системой простых дифференциальных уравнений (5.13). Результаты расчетов представлены в виде графиков динамики содержания радионуклидов \(^{137}\)Cs для разных камер склона (рис 5.2 и 5.3.)

По данным расчетов по камерной модели нами проведены оценки никовых (максимальных) содержаний радионуклидов в разных камерах и время (в годах), когда достигаются эти никовые значения (таблица 5.6.). Данные этой таблицы показывают, что наибольшая доля (22 %) радионуклидов попадает к человеку, но через долгое время (80 лет). Этот результат показывает насколько эффективно и долго склоновая экосистема удерживает радионуклиды и тормозит их поступление к людям. В таблице 5.7. приведены

Рис. 5.2. Распределение радионуклидов для камер склоновой экосистемы: 1 - камера-лес, 2 – камера-опушка, 3 – камера-человек, 4 – камера-луг, 5 – камера-пойма, 6 – камера-терраса, 7 – камера-биота, 8 – камера-пойма, 9 – камера-вода

Рис. 5.3. Распределение радионуклидов для отдельных камер: 1- камера-человек, 2 – камера-терраса, 3-камера-вода (м-процент содержания радионуклидов в разных камерах)
данные расчетов индивидуальных и коллективных доз для людей, при разных скоростях движения радионуклидов по склону. Очевидно, что наибольших доз следует ожидать при максимальных скоростях переходов между камерами и высоких содержаниях радионуклидов в начале склона, в лесу.

Нами произведен расчет величин коллективных доз облучения людей при замелепользовании данной склоновой экосистемой. Оценивается масса всей произведенной продукции на террасе, кормов на пойме, объемов потребленной для питья и орошения воды. Учитывая ожидаемое содержание радионуклидов в этих составляющих, через дозовую цену оценивается возможная величина коллективной и индивидуальной дозы облучения людей. При этом, расчеты проведены для разных скоростей перехода радионуклидов и при разных значениях запаса цезия-137 (от 1 до 40 Ки) между камерами склоновой экосистемы (таблица 5.7). Видно, что с ростом уровня запаса радионуклидов и скоростей перехода радионуклидов между камерами, заметно растут значения индивидуальных и коллективных доз облучения, а значит и риски для людей. Индивидуальные дозы варьируют от малых значений 0,02 Зв/год до смертельно опасных 19 Зв/год. Таким образом, индивидуальная доза облучения может меняться в тысячу раз. Речь идет о возможности рассчитать и предусмотреть степень опасности явлений распределения и перераспределения радионуклидов в склоновых экосистемах.

Таблица 5.6. Накопление радионуклидов в камерах.

<table>
<thead>
<tr>
<th>Камеры</th>
<th>Максимальная активность радионуклидов (%)</th>
<th>Время (годы)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опушка</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Луг</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Терраса</td>
<td>1,4</td>
<td>20</td>
</tr>
<tr>
<td>Пойма</td>
<td>0,82</td>
<td>24</td>
</tr>
<tr>
<td>Вода</td>
<td>0,32</td>
<td>30</td>
</tr>
<tr>
<td>Биота</td>
<td>1,16</td>
<td>44</td>
</tr>
<tr>
<td>Донные отложения</td>
<td>2,3</td>
<td>48</td>
</tr>
<tr>
<td>Человек</td>
<td>22</td>
<td>80</td>
</tr>
</tbody>
</table>

Таблица 5.7. Прогноз распределения коллективной и индивидуальной дозы для населения в количестве 500 человек при разных случаях загрязнения (склоновые экосистемы).

<table>
<thead>
<tr>
<th>Минимальная скорость переходов.</th>
<th>Активность радионуклида, Ки</th>
<th>Коллективная доза, Чел/Зв</th>
<th>Индивидуальная доза, Зв</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Средняя скорость переходов.</td>
<td>0,01628</td>
<td>0,814</td>
<td>1,628</td>
</tr>
<tr>
<td></td>
<td>8,14 ⋅ 10¹</td>
<td>4,07 ⋅ 10²</td>
<td>8,14 ⋅ 10²</td>
</tr>
<tr>
<td>Максимальная скорость переходов.</td>
<td>0,3256</td>
<td>1,628</td>
<td>3,256</td>
</tr>
<tr>
<td></td>
<td>2,442 ⋅ 10²</td>
<td>1,221 ⋅ 10²</td>
<td>2,442 ⋅ 10²</td>
</tr>
<tr>
<td></td>
<td>0,4884</td>
<td>2,442</td>
<td>4,884</td>
</tr>
</tbody>
</table>
Таблица 5.8. Прогноз надежности удержания радионуклидов в типовой склоновой экосистеме при разных уровнях радионуклидного загрязнения (137Cs) верхней части экосистемы (лес)

<table>
<thead>
<tr>
<th>Уровень загрязнения</th>
<th>10 Ки/км²</th>
<th>50 Ки/км²</th>
<th>100 Ки/км²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Лес</td>
<td>0,934</td>
<td>0,671</td>
<td>0,034</td>
</tr>
<tr>
<td>2. Опушка</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3. Луг (6%)</td>
<td>0,999</td>
<td>0,997</td>
<td>0,993</td>
</tr>
<tr>
<td>4. Сельскохозяйственная терраса (1,4%)</td>
<td>0,9998</td>
<td>0,999</td>
<td>0,998</td>
</tr>
<tr>
<td>5. Пойма озера (0,82%)</td>
<td>1</td>
<td>0,9994</td>
<td>0,999</td>
</tr>
<tr>
<td>6. Биота донных отложений озера (1,16%)</td>
<td>0,95</td>
<td>0,748</td>
<td>0,496</td>
</tr>
<tr>
<td>7. Общая надежность экосистемы</td>
<td>0,886</td>
<td>0,5</td>
<td>0,168</td>
</tr>
</tbody>
</table>

Далее нами проведен расчет надежности исследуемой склоновой экосистемы, при участии ряда возможных контрмер (см. таблица 5.10). Выбраны следующие реальные и возможные контрмеры. Вспашка пожарозащитной полосы между лесом и опушкой может снизить поток радионуклидов примерно в 1,5 раза. Создание тут дороги, по нашим исследованиям, может тормозить сброс радионуклидов почти в 2 раза. Удаление дернины на террасе снижает поток радионуклидов в 10 раз, а подпорная стенка почти в 2 раз [10]. При использовании всех контрмер, можно ожидать снижения сброса радионуклидов в 26 раз.

5.4.6. Надежность и экологические риски в локальной агроэкосистеме[10]

Далее мы рассмотрим результаты надежностного анализа применительно к локальной агроэкосистеме, на которой мы провели многолетние исследования.

При расчете данных для таблицы 5.11, был использован следующий алгоритм. По все четырем пастбищам села Галузия, были применены три оценки скоростей перехода между камерами данной агроэкосистемы — минимальные, средние и максимальные. Для каждого пастбища проведены, по данным мониторинга, оценки уровней загрязнения радионуклидом цезий-137. Для каждого пастбища рассматривается последовательная система: почва-трава-корова — масло и молоко— люди. По этим данным получены оценки надежности транспорта радионуклидов по каждому пастбищу и при разных скоростях переходов радионуклидов. Зная надежность итогового транспорта радионуклидов можно оценить запас поступления радионуклидов к людям при разных скоростях переходов между камерами. Затем были получены оценки в результате потребления мяса и молока, коллективных доз облучения от всех пастбищ. Эти коллективные дозы оцениваются в диапазоне от 3000 чел.Зв до 13000 чел.Зв. Это достаточно значимые величины. По ним можно оценить средние величины индивидуальных доз облучения.

<table>
<thead>
<tr>
<th>Камера</th>
<th>Вероятность сброса радионуклидов</th>
<th>Комментарии</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Лес</td>
<td>0,029</td>
<td>Загрязнение воды ожидается с вероятностью 1х2х3х4х5х6 = 1,5 Е-3. Это означает, что содержание цезия в воде составляет 1,1 Е-2 Бк/л</td>
</tr>
<tr>
<td>2. Опушка</td>
<td>0,77</td>
<td>Загрязнение донных отложений в озере ожидается с вероятностью 1х2х3х4х5х6 = 9 Е-3. Это означает, что содержание цезия в донных отложениях составляет 3,3 Бк/л</td>
</tr>
<tr>
<td>3. Луг</td>
<td>0,6</td>
<td>При Кт=1000, содержание цезия в биоте донных отложений составляет 3300 Бк/кг. Тогда по отношению к предельной дозе в 4 ГР/год (600 кВт-с/кг), допустимый уровень загрязнения леса составляет 182 Ки.</td>
</tr>
<tr>
<td>4. Терраса</td>
<td>0,57 (к человеку 0,4)</td>
<td>При Кт=1000, содержание цезия в биоте донных отложений составляет 3300 Бк/кг. Тогда по отношению к предельной дозе в 4 ГР/год (600 кВт-с/кг), допустимый уровень загрязнения леса составляет 182 Ки.</td>
</tr>
<tr>
<td>5. Пойма</td>
<td>0,2</td>
<td>Загрязнение донных отложений в озере составляет около 5 Бк/кг. Допустимый уровень загрязнения донных отложений составляет 1000 Бк/кг (при этом уровне загрязнения молока ожидается в 100 Бк/л). Тогда по молоку допустимый уровень загрязнения леса по запасу радионуклидов не превышает 200 Ки.</td>
</tr>
<tr>
<td>6. Биота</td>
<td>0,33</td>
<td>Люди получают от воды озера и продукции террасы радионуклиды с вероятностью 5,4 Е-3.</td>
</tr>
<tr>
<td>7. Донные отложения</td>
<td>0,1</td>
<td>При этом загрязнение травы на террасе составляет около 5 Бк/кг. Допустимый уровень загрязнения кормовой травы составляет 1000 Бк/кг (при этом уровне загрязнения молока ожидается в 100 Бк/л). Тогда по молоку допустимый уровень загрязнения леса по запасу радионуклидов не превышает 200 Ки.</td>
</tr>
</tbody>
</table>

Таблица 5.9. Надежность типовой склоновой экосистемы как системы транспорта 137Cs к озеру и к человеку (параметры озера: S=1 км², H=5 м, V=5Е+9, донные отложения: S=1 км², h = 0, 1м, Кт=1000) (Без контрмер). Считается, что в лесу лежит запас радионуклида в 1 Ки Cs-137.

279

280
Таблица 5.10. Надежность типовой склоновой экосистемы как системы транспорта 137Cs к озеру и к человеку (параметры озера: $S=1$ км2, $H=5$ м, $V=5E+9$ л., донные отложения $S=1$ км2; $h = 0$, $1m$, $K_p=1000$) (при участии выбранных контрмер (КМ)). Считается, что в лесу лежит запас радионуклидов в 1 Ки Cs-137.

<table>
<thead>
<tr>
<th>Камера</th>
<th>Вероятность сброса (без КМ) $K_d=1$</th>
<th>Пожарозащитная полоса между лесом и опушкой $K_d=1,5$</th>
<th>Дорога между лесом и опушкой $K_d=2$</th>
<th>Удаление дернины на террасе $K_d=10$</th>
<th>Подпорная стенка в почве между террасой и поймой $K_d=2$</th>
<th>Влияние всех контрмер одновременно</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Лес</td>
<td>0,029</td>
<td>0,02</td>
<td>0,02</td>
<td>0,029</td>
<td>0,029</td>
<td>0,02</td>
</tr>
<tr>
<td>2. Опушка</td>
<td>0,83</td>
<td>0,83</td>
<td>0,4</td>
<td>0,83</td>
<td>0,83</td>
<td>0,4</td>
</tr>
<tr>
<td>3. Луг</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>4. Терраса</td>
<td>0,57 (к человеку 0,4)</td>
<td>0,57 (к человеку 0,4)</td>
<td>0,57 (к человеку 0,4)</td>
<td>0,12</td>
<td>0,57 (к человеку)</td>
<td>0,12</td>
</tr>
<tr>
<td>5. Пойма</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>6. Биота озера</td>
<td>0,33</td>
<td>0,33</td>
<td>0,33</td>
<td>0,33</td>
<td>0,33</td>
<td>0,33</td>
</tr>
<tr>
<td>7. Донные отложения</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>8. Вода озера</td>
<td>0,77</td>
<td>0,77</td>
<td>0,77</td>
<td>0,77</td>
<td>0,77</td>
<td>0,72</td>
</tr>
<tr>
<td>9. Люди</td>
<td>0,4 $+$0,1</td>
<td>0,4 $+$0,1</td>
<td>0,4 $+$0,1</td>
<td>0,4 $+$0,1</td>
<td>0,4 $+$0,1</td>
<td>0,4 $+$0,1</td>
</tr>
<tr>
<td>Вероятность сброса 1x2x3x4x5x6</td>
<td>1,5 Е-3 $K_d(2)=1$</td>
<td>1,1 Е-3 $K_d(2)=1,4$</td>
<td>2,7 Е-4 $K_d(2)=5,6$</td>
<td>3,3 Е-4 $K_d(2)=4,5$</td>
<td>8,7 Е-4 $K_d(2)=1,7$</td>
<td>5,8 Е-5 $K_d(2)=25,9$</td>
</tr>
</tbody>
</table>

Таблица 5.11. Оценка и расчёт надежности агроландшафта с. Галузя, как системы поступления радионуклидов 137Cs от пастбищ в популяцию людей, которые живут в этом селе. Блок-схема камерной модели с. Галузя, приведена выше. Оценивается по надежностно-последовательной модели - надежность «поступления» радионуклидов от каждого из пастбищ села.

<table>
<thead>
<tr>
<th>Номер пастбища и значения скоростей перехода между камерами</th>
<th>Надежность поступления радионуклидов через молоко</th>
<th>Надежность поступления радионуклидов через мясо</th>
<th>Надежность поступления радионуклидов через экспорт молока и мяса вместе</th>
<th>Сумма величин надежности по строчкам таблицы (по пастбищам)</th>
<th>Надежность по всем пастбищам при разных значениях параметров</th>
<th>Ожидаемая коллективная доза, (дозовая ценность Cs-137=2 Е-8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.MIN</td>
<td>0,0018</td>
<td>0,00424</td>
<td>0,00505</td>
<td>0,01447</td>
<td>0,1202</td>
<td>2,94 Е+3</td>
</tr>
<tr>
<td>1. MIDLE</td>
<td>0,0273</td>
<td>0,0203</td>
<td>0,0185</td>
<td>0,0661</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>1. MAX</td>
<td>0,04177</td>
<td>0,02742</td>
<td>0,02687</td>
<td>0,09606</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>2.MIN</td>
<td>0,00297</td>
<td>0,00266</td>
<td>0,00426</td>
<td>0,00991</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>2. MIDLE</td>
<td>0,0243</td>
<td>0,0184</td>
<td>0,0246</td>
<td>0,0653</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>2. MAX</td>
<td>0,0367</td>
<td>0,0244</td>
<td>0,0122</td>
<td>0,0733</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>3.MIN</td>
<td>0,01109</td>
<td>0,01097</td>
<td>0,01069</td>
<td>0,03275</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>3. MIDLE</td>
<td>0,0281</td>
<td>0,0265</td>
<td>0,0228</td>
<td>0,0774</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>3. MAX</td>
<td>0,0552</td>
<td>0,0446</td>
<td>0,0353</td>
<td>0,1378</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>4.MIN</td>
<td>0,0194</td>
<td>0,0166</td>
<td>0,02707</td>
<td>0,0631</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>4. MIDLE</td>
<td>0,0419</td>
<td>0,0323</td>
<td>0,0421</td>
<td>0,1153</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
<tr>
<td>4. MAX</td>
<td>0,0642</td>
<td>0,0454</td>
<td>0,0380</td>
<td>0,1502</td>
<td>$2\Sigma A_i = 3,968$</td>
<td>$2\Sigma A_i = 3,968$</td>
</tr>
</tbody>
</table>
Это составляет от 1,5 чел.Зв до 6 чел.Зв за всю жизнь на данной территории.

По полученным данным есть возможность оценки ожидаемой эффективности реальных и возможных контрмер для снижения дозовых загрузок на население данного села Галузия. Рассмотрена эффективность по снижению доз для ряда контмер.

известно, что внесение повышенных норм удобрений способно снизить уровни загрязнения растительности до 2 раз. Высев культурных трав (сеянка), также может снизить уровни загрязнения травы до 2 раз. Снятие верхнего слоя дернины, с помощью специальной машины (TURF CUTTER), может снизить уровень загрязнения кормовых трав до 10 раз. Использование введения коровам феррациновых болюсов (феррацин избирательно связывает цезий в желудке у коров) снижает уровни загрязнения молока до 4 раз. Использование сепарации молока через ферроциновые фильтры, способно снизить уровень содержания цезия в молоке, как минимум в 5 раз. Применяя данные контрмеры, по каждому из пастбищ, нами получены оценки снижения доз от 1,7 раза до 69 раз.

При одновременном использовании сразу трех контрмер – внесение удобрений, снятие дернины и использование феррациновых фильтров способно уменьшить дозы в 90 раз.

5.4.7. Надежность и экологические риски в экосистеме каскада Днепровских водохранилищ.

Применение разработанный нами подхож по оценка надежности транспорта радионуклидов к каскаду Днепровских водохранилищ.

Реальное количество сброшенного Cs-137 по содержанию в илах Киевского водохранилища составило около 92 кКи. (таблица 5.13). Расчет проводили для межени (минимального уровня воды) и для паводков с высокой водности. В каждой графе по две цифры – меньшая для межени, большая для паводка. Получены оценки уровня загрязнения воды, илов и биоты при разовом сбросе из Киевского водохранилища в 1 Ки. Илы Днепровского каскада представляют собой систему активно удерживающую, попавшие в них радионуклиды цезия-137. Ранее нами было показано, что каскад способен удерживать до 0,9993 от общего сброса радионуклидов.

По этим данным проведены оценки уровней удельного загрязнения воды и илов в каждом из водохранилищ. Используя модель...
Таблица 5.12. Оценка эффективности применения разных контрмер в агроэкосистеме (на примере с. Галузя) путем оценки надежности поступления радионуклидов 137Cs от 4-х основных постели и для снижения экологических рисков (при средних скоростях перекочевки радионуклидов между камерами блок-схемы модели).

<table>
<thead>
<tr>
<th>Контрмеры</th>
<th>Kd (Т)</th>
<th>Надежность этапа (N)</th>
<th>Запас радиоактивности (т/га)</th>
<th>Надежность поступления радионуклидов (по влажности)</th>
<th>Надежность поступления радионуклидов (по высоте)</th>
<th>Надежность поступления радионуклидов (по времени)</th>
<th>Переход радионуклидов (K)</th>
<th>Суммарный переход радионуклидов (K)</th>
<th>Кд(2) или надежности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нет контроль</td>
<td>1</td>
<td>1</td>
<td>0,010</td>
<td>0,08</td>
<td>0,019</td>
<td>0,044</td>
<td>0,00007 Kd = 1</td>
<td>0,0022 (1,6 чел.ч)</td>
<td>Kd = 1</td>
</tr>
<tr>
<td>Удаление</td>
<td>2</td>
<td>1</td>
<td>0,016</td>
<td>0,025</td>
<td>0,027</td>
<td>0,051</td>
<td>0,00004</td>
<td>0,013 (0,96)</td>
<td>Kd = 1,7</td>
</tr>
<tr>
<td>Сенка</td>
<td>3</td>
<td>1</td>
<td>0,010</td>
<td>0,025</td>
<td>0,11</td>
<td>0,026</td>
<td>0,00015 Kd = 2,15</td>
<td>0,008 (0,6)</td>
<td>Kd = 2,7</td>
</tr>
<tr>
<td>Скважины деревни (5-10 км)</td>
<td>10</td>
<td>1</td>
<td>0,015</td>
<td>0,0186</td>
<td>0,007</td>
<td>0,0185</td>
<td>0,00015</td>
<td>0,000032 (0,024)</td>
<td>Kd = 46,7</td>
</tr>
<tr>
<td>Феррициевые болосы</td>
<td>1</td>
<td>1</td>
<td>0,010</td>
<td>0,014</td>
<td>0,013</td>
<td>0,027</td>
<td>0,00004</td>
<td>0,0012</td>
<td>0,0012(0,188)</td>
</tr>
<tr>
<td>Феррициевые фильтры (30-60 км)</td>
<td>10</td>
<td>1</td>
<td>0,015</td>
<td>0,025</td>
<td>0,025</td>
<td>0,042</td>
<td>0,00004</td>
<td>0,0013</td>
<td>0,0021 (1,6)</td>
</tr>
<tr>
<td>Удаление + скважины деревни + болосы</td>
<td>2</td>
<td>1</td>
<td>0,010</td>
<td>0,015</td>
<td>0,01</td>
<td>0,025</td>
<td>0,00014</td>
<td>0,000024(0,016)</td>
<td>Kd = 100</td>
</tr>
</tbody>
</table>

Таблица 5.13. Оценка надежности биоты в каскаде Днепровских водохранилищ при расчёте на сброс 1 кн 137Cs в условиях межени (M) и паводка (P) 3 % водности (раз в 30 лет) по содержанию P/н в каждом из компонент экосистем водохранилищ (Кн).

<table>
<thead>
<tr>
<th>Водохранилище</th>
<th>Содержание (Kн)</th>
<th>Биота (Kн)</th>
<th>Вода (Kн)</th>
<th>Тип</th>
<th>Активность биоты, БК/кг</th>
<th>Активность воды, БК/кг</th>
<th>Примечание (оценка допустимого уровня содержания Cs-137 в биоте составляет 600 кн/кг. Тогда допустимый сброс составляет (превышение)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Киевское С=9/20мм, V=3,7 км³</td>
<td>0,7</td>
<td>0,2</td>
<td>0,1</td>
<td>M</td>
<td>0,3 Бк/кг</td>
<td>300 Бк/кг</td>
<td>2Е-3</td>
</tr>
<tr>
<td>Канавское С=6/80мм, V=2,6 км³</td>
<td>0,06</td>
<td>0,03</td>
<td>0,01</td>
<td>M</td>
<td>3,2Е-2</td>
<td>32</td>
<td>Для остальных водохранилищ значение активности биоты выше по сравнению с биотой на вододен</td>
</tr>
<tr>
<td>Кременчугское S=2250 мм³, V=13,5 км³</td>
<td>0,008</td>
<td>0,001</td>
<td>M</td>
<td>1,3Е-3</td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Запорожское S=570 м³, V=2,4 км³</td>
<td>2Е-3</td>
<td>1,2Е-3</td>
<td>8Е-4</td>
<td>П</td>
<td>3Е-3</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>Днепровское S=410 м³, V=3,3 км³</td>
<td>7Е-5</td>
<td>2Е-5</td>
<td>1Е-5</td>
<td>П</td>
<td>6Е-5</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>Каховское S=2150м³</td>
<td>8Е-6</td>
<td>1Е-6</td>
<td>1Е-6</td>
<td>М</td>
<td>1,5Е-6</td>
<td>0,015</td>
<td></td>
</tr>
<tr>
<td>1Е-4</td>
<td>3,2Е-5</td>
<td>3,2Е-5</td>
<td>П</td>
<td>1,7Е-6</td>
<td>0,017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Надежность 10^-1 кн / кн | 285
Б. Амиро, нами проведены оценки дозовых нагрузок на биоту в воде и в донных отложениях. Это позволило оценивать дозы на плавающую биоту и на биоту донных отложений (бентос). Исходя из постулированного нами предела, на загрязнение биоты в 600 кБк/кг (при этом доза на биоту может достигать критической величины в 4 Гр/год. Это позволило нам оценить допустимые сбросы радионуклидов каждое из водохранилищ, которые очень велики по сравнению с реально существующими сбросами. В целом данный подход позволяет оценивать надежность биоты этой экосистемы.

Далее проведем анализ полученных данных по надежности рассмотренных выше вариантов экосистем.

5.5. Обсуждение описанных результатов.

1. В данном разделе представлены данные анализа надежности транспорта радионуклидов в склоновой экосистеме. Типовая упрощенная блок-схема склоновой экосистемы представлена на рис. 5.3. На основе собственных исследований на склоновых экосистемах в 30-км зоне отжигания ЧАЭС (на реке Уж), и литературных данных проведены оценки значений скоростей переката радионуклидов цезия-137 (таблица 5.5). Тут приведены минимально возможные скорости, средние и максимальные значения. Для средних значений скоростей переката построена система обыкновенных дифференциальных уравнений (5.13). Решение этой системы уравнений в графическом виде представлены на рис. 5.2 и 5.3. Видно, что, как правило, динамика перераспределения радионуклидов между камерами имеет максимум. В качестве общей характеристики разных составляющих склоновой экосистемы, можно использовать значения максимальных уровней содержания радионуклидов (процент от общего запаса в экосистеме) и срок, когда он формируется (таблица 5.6). Видно, что наибольший запас формируется на опушке (12%) и на лугу (6%), а потом со временем до 22 % от запаса переходит в зону пользования человеком этой склоновой экосистемой, но через длительный срок в 80 лет. То есть, в конце концов, практически большая часть радионуклидов, из запаса в склоновой экосистеме доходит до людей в виде накопленной дозы облучения, которая может быть оценена через дозовые коэффициенты. В таблице 5.7. сделаны оценки индивидуальных и коллективных доз для случая села с 500 жителями. Видно, что (с учетом радиоактивного распада) при максимальных скоростях переходов между камерами склоновой экосистемы в популяции людей даже при малых уровнях запасов радионуклидов (1 Кд), коллективная доза может достигать 200 Чел.-Зв. Эти заметные величины, которые требуют учета и контрмер. Опирайсь на формулу 5.1, имеем возможность оценить надежность транспорта радионуклидов из леса до популяции людей (таблица 5.8). В этих камерах, где есть биота можно спрогнозировать поражение биоты при высоких уровнях плотности загрязнения леса. Поэтому общая надежность транспорта радионуклидов по данной склоновой экосистеме уменьшается от 0,89 (при 10 Ки/км²) до 0,17 (при плотности загрязнения 100 Ки/км²). С учетом влияния радионуклидов на биоту озера также проведена оценка путей и вероятности поступления радионуклидами в популяцию людей (таблица 5.9). Для разработки возможных методов защиты людей в склоновой экосистеме рассмотрены некоторые потенциально эффективные контрмеры, и оценено их возможное влияние на систему транспорта радионуклидов к озера и к человеку (таблица 5.10). Для анализа выбраны следующие контрмеры: пожароохранный пояс и санитарный пояс, дорога между лесом и опушкой, удаление дернины на сельскохозяйственной террасе, и создание защитной подпорной стенки между террасой и поймой озера. Эти контрмеры, так или иначе, применялись, или могут быть применены на склоновых экосистемах. Контрмеры влияют на величину скоростей переходов между камерами. Наибольшее влияние, как способ снижения дозы облучения людей (через коэффициент дезактивации) имеют дорога между лесом и опушкой (Кд = 5,6), и удаление дернины на террасе (Кд = 4,5). Самая лучшая ситуация, когда эти две контрмеры будут использованы вместе (Кд = 25,2).

2. Расчет надежности локальной агрокосистемы проведен нами на примере с. Галичье, о которой шла выше. Из таблицы 5.11., видно, что наибольшая надежность поступления радионуклидов от 4-х пастбищ к человеку, оценена для максимальных скоростей перехода радионуклидов (в 4 раза больше чем при минимальных скоростях). Это означает, что и доза при этом в 4 раза выше. Поток радионуклидов от каждого из пастбищ в системе: почва-трава-корова – молоко и мясо – люди рассматриваются, как последовательная
системы и ее надежность, рассчитывается как произведение надежности транспорта радионуклидов на ее камерам. А все 4 пастбища, лес и огороды работают, как параллельные элементы по доставке радионуклидов к людям. Тут общая надежность может быть рассчитана в виде суммы потоков радионуклидов от всех источников (см. таблица 5.12.). Эти оценки представлены в таблице B в таблице 5.12. приведены данные оценок эффективности некоторых контрмер, в плане снижения потока радионуклидов от 4-х реальных пастбищ в данном селе (внесение повышенных норм удобрений, переход от диких пастбищ к сеняке, снятие дернины на пастбищах и высев трави, применение введения коров на разных этапах). В фильтрации молока на сепараторах через феррионовые фильтры. Коэффициент дезактивации выбранных контрмер составляет от 2 до 13 единиц. Оптимальная оценка может быть рассчитана для комбинированной системы контрмер: удобрения, снятие дернины, и применение феррионовых фильтров. В этой ситуации мы можем иметь значение Кd в 90 единиц, что характеризует значительную потенциальную эффективность контрмер в локальных агроэкосистемах.

3. Нами проведен также анализ надежности экосистемы каскада Днепровских водохранилищ, как системы транспорта радионуклидов от каскада к людям.

Показано (таблица 5.13.), что каскад Днепровских водохранилищ имеет оценки высокой надежности «поступления» радионуклидов людям. В период межени, так и при паводках высокой 3% водности. При малом сбросе радионуклидов (1 Ки 137Cs в год) ситуация не составляет заметных экологических рисков для биоты и для людей, через использование воды для орошения и для питания. Но реальные количества накопленных радионуклидов, в частности, в илах Киевского водохранилища составляет около 92 кДк 137Cs, что потребует значительного внимания и учета при реальных количествах сбросов радионуклидов. А если учесть еще сбросы 90Sr, то ситуация потребует сурового контроля.

4. В целом использование анализа радиэкологических ситуаций в разных типах экосистем с использованием моделей и теории надежности показало себя эффективным и эвристическим средством оценок и моделирования радиэкологических и экологических ситуаций и может быть с успехом использоваться в дальнейших исследованиях.

5.5.1. Оценка критерия экологического риска на основе теории радиоемкости экосистем

Нами разработан метод экологического нормирования допустимых уровней выброса радионуклидов в окружающую среду на основе моделей и теории радиоемкости экосистем. Радиоемкость экосистем — количественный параметр, определяющий предел загрязнения экосистем радионуклидами, после достижения, которого благополучие экосистемы нарушается.

Установлены дозовые пределы для экосистем, когда возможно утление и подавление биоты экосистем. Эти пределы соответствуют 0,4 Гр/год для животных и 4 Гр/год для растений и гидробионтов. Такие уровни доз соответствуют следующим средним уровням загрязнения биоты 137Cs: 64 кБк/кг для животных, и 640 кБк/кг для растений. Представлены данные расчетов пределов для загрязнения биоты другими радионуклидами.

Таким образом, мерой экологического риска для биоты может служить оценка дозы облучения и конечное уровень накопления радионуклидов в конкретной биоте экосистемы. Так дозе в 4 Гр/год для растений и гидробионтов, можно поставить в соответствие риск равный -1, и для животных дозе в 0,4 Гр/год также соответствует — экологический риск равный 1. Можно предложить, таким образом, равномерную шкалу экологических рисков для биоты от 0 до 1 в диапазоне доз от 0-4 Гр/год для растений и гидробионтов, и в диапазоне доз 0–0,4 Гр/год для живых в условиях радиоэкологических загрязнений.

Построены модели радиоемкости различных типов экосистем - наземных и водных. Эти модели позволят определить критические элементы экосистем, где возможно концентрирование загрязнителей. Такие элементы определяют степень риска для экосистем при попадании радионуклидов. Таким образом, экологический риск определяется состоянием и уровнями загрязнения критических элементов экосистемы и ландшафта.

Показано, что экологический риск для экосистемы в условиях загрязнения определяется не только и не столько уровнями выбросов загрязнителей на экосистему, сколько закономерностями и скоростями перераспределения загрязнителей по элементам экосистемы и ландшафта и их концентрирования в критических биотических компонентах.
Экспериментальные и теоретические исследования поведения параметров радиоемкости экосистем в условиях загрязнения другими поллютантами (тяжелыми металлами) позволили установить, что параметры радиоемкости экосистем обладают высокой чувствительностью к таким загрязнениям биоты экосистем.

Показано, что этот подход позволяет установить эквивалентность в экологическом действии химических загрязнителей на биоту и радиационного фактора (радионуклидов).

Предложен метод оценки биологического действия разных типов загрязнителей на экосистемы в радиационных дозах (грей-эквивалентах). Такой метод позволяет единым образом оценивать эффекты на уровне экосистем от действия на биоту самых разных типов загрязнителей. Это позволяет проводить оценку действия множества различных загрязнителей на биоту экосистем и выражать эффект в эквивалентной дозе радиационного воздействия.

5.5.2. Экологическая емкость и радиоемкость биоты экосистем, как мера экологического риска

Экологические риски для человека в значительной степени определяются экологическими рисками для биоты окружающей его среды. Экологический риск для биоты экосистем, в условиях действия поллютантов разной природы, можно определять через нарушение параметров экологической емкости и радиоемкости биоты по радионуклидному трассёру (Cs-137). Экологическая емкость — предельная нагрузка на биоту экосистем от поллютантов, при которой подавляется рост биомассы и ее способность к кондиционированию среды обитания. Методами математического моделирования и в эксперименте показано, что поведение показателя радиоемкости, по искусственно введенному в экосистему трассёру (Cs-137), отображает способность биоты к накоплению биомассы и кондиционированию среды. Установлено, что параметр радиоемкости биоты экосистем четко коррелирует с показателем экологической емкости и характеристиками экологического риска для биоты. Чем выше показатель радиоемкости биоты тем меньше величина экологического риска для нее в реальных условиях воздействия разных поллютантов.

Разработаны модели определения критических компонент биоты, ответственных за величину экологического риска для раз-
на примере конкретного Галузия (область) разрушения ее структуры. Экспериментальными и теоретическими исследованиями нами установлено, что чем выше параметр радиоемкости биоты в экосистеме, тем выше уровень благополучия и надежности биоты в ней. В частности, в исследованиях с растительными экосистемами показано, что способность биоты накапливать и удерживать радиоактивный трассер 137 Cs, аналог минерального элемента питания растений, обладает устойчивостью и надежностью биоты данной экосистемы. Установлено, что снижение показателя радиоемкости биоты в растительной экосистеме при воздействии химических поллютантов и при гамма-облучении растений, четко отображает снижение благополучия биоты и надежности экосистемы.

Экспериментальными и теоретическими исследованиями нами установлено, что чем выше параметр радиоемкости биоты в экосистеме, тем выше уровень благополучия и надежность биоты в данной экосистеме. Установлено, что снижение показателя радиоемкости биоты в растительной экосистеме, при воздействии химических поллютантов и при гамма-облучении растений, четко отображает снижение благополучия и надежности биоты. Можно утверждать, что параметры радиоемкости способны выступать в качестве меры надежности каждого элемента экосистемы, и экосистемы в целом. Чем выше фактор радиоемкости, и/или вероятность удержания трассера в каждом из элементов экосистемы, тем выше надежность составных элементов экосистемы.

Исследование радиоэкологических процессов в агроэкосистемах особенно важно для оценки и прогноза их экологической безопасности для населения, особенно при формировании дозовых нагрузок. Кроме использованного нами ранее метода камерных моделей, считаем целесообразным разработать подходы к более общей оценке надежности и устойчивости агроэкосистемы. Речь идет об анализе надежности агроэкосистемы как системы транспорта радиоактивных элементов из почвы к человеку, средствах и методах защиты и модификации данных процессов.

Исходя из проведенных теоретических исследований, можно полагать, что, используя параметры скоростей обмена радиоактивными веществами между камерами (α_1 и α_2), можно оценивать надежность компонента экосистемы, как элемента системы транспорта радиоактивных элементов по камерам по формуле (см. формулу 5.12.).

На примере конкретного села Галузия (Волынская область) показано, что основными дозообразующими компонентами данной агроэкосистемы, являются 4 основные пастибища [7]. Эти пастибища функционируют как параллельная система. Согласно теории надежности общая надежность данной агроэкосистемы, как системы транспорта радиоактивных элементов из почвы к человеку, может быть представлена в виде суммы параметров надежности составляющих блоков-пастибищ.

Транспортный поток радиоактивных элементов из каждого пастибища к популяции населения представляет строго последовательную систему: почва - трава - корова - молоко - мясо - люди. Надежность такой последовательной экосистемы может быть представлена в виде произведения параметров надежности составляющих транспортный поток радиоактивных элементов-блоков.

Литература

ЧАСТЬ 6.
ОЦЕНКА И МОДЕЛИРОВАНИЕ ЭКОЛОГИЧЕСКИХ УЩЕРБОВ, И СТРАХОВАНИЕ ЭКОЛОГИЧЕСКИХ РИСКОВ

6.1. Введение

В анализе, проведенном международными экспертами и организациями (ВОЗ, и др.) отмечено, что одним из путей решения проблемы защиты и гигиены персонала, населения и окружающей среды (ОС) в зоне влияния вредных и опасных производств и объектов, заключается в том, чтобы субъекты экономической деятельности в более полной степени компенсировали все издержки воздействия возможных аварий на персонал, население и окружающую среду (ОС). Суть такого подхода в двух принципах “платит тот, кто загрязняет” и “платит пользователь”. Это обстоятельство, особенно важно для Украины в условиях либерализации экономики, когда приватизация предприятий приводит, как правило, к снижению расходов на обеспечение экологической безопасности персонала, населения и ОС.

Оценка воздействия реальных и возможных аварий на производствах на персонал, население и ОС показала их высокую стоимость [1]. До сих пор ликвидация аварий и их последствий на вредных и опасных производствах и объектах ложилось бременем на государственный бюджет. Изымаемые налоги, сборы и штрафы не способны даже частично компенсировать затраты на аварии и аварийные ситуации.

Действующий закон по охране ОС, обязывает вредные производства и объекты для осуществления производственной деятельности, оформлять лицензию на всю деятельность, потенциально опасную для персонала, населения и ОС. Необходимо предумотреть при получении такой лицензии, обязательное экологическое страхование предприятия и других опасных объектов. Такое обязательное страхование от возможных аварий и аварийных ситуаций обеспечит страховую защиту персоналу, населению и ОС. Система страхования от аварий и аварийных ситуаций на вредных и опасных производствах и объектах эффективно действует во многих странах Европы (Бельгия, Франция и др.) [1].
Предварительная оценка возможных ущербов от аварий и аварийных ситуаций, по разработанным научно-обоснованным и корректным методикам, позволит реально оценить страховые суммы и страховые взносы, необходимые для ликвидации и компенсации последствий таких аварий.

6.2. Основные алгоритмы страховой защиты
При страхованиях рисков используют два противоположных алгоритма, АЛГОРИТМ БЕРНУЛЛИ. Снижение страховых тарифов за счет большего числа клиентов. Этот алгоритм предполагает, что процесс не поддается регулированию или сознательно не регулируется.

Это пасивный финансовый подход, не требующий вложения средств и усилий на преобразование процесса, риск неуспеха которого не оценивается.

Тут речь идет о статистике. Чем больше страхований рисков на относительно малые суммы, тем больше доходы страховых компаний.

АЛГОРИТМ КОЛУМБА. Применим к процессам, риск неуспеха которых должен быть уменьшен до бесконечно малого за счет соответствующей регулировки.

Этот алгоритм должен применяться к процессам издержки от неуспеха которых, заметно превышает издержки необходимые для регулирования процесса.

Здесь речь идет о вложении серьезных средств в дело снижения рисков. Так Колумб, оснастив своих корабли большей парусностью и вооружением, снизил риски от нападения пиратов.

Схема формирования рисков представлена на рис. 6.1.

Видно (рис. 6.1.), что факторы, действующие на вредные производства формируют гигиенические и экологические риски и ущербы. Много тут определяется вероятностями реализации аварийных сценариев.

Гигиенический риск (рис. 6.2.) в свою очередь можно разбить на риски для персонала аварийного предприятия и для населения в зоне влияния аварии (санитарно-защитная зона (СЗЗ) и за ее пределами). Гигиенический риск в свою очередь делится на генетический и соматический риск. Первый касается потомков людей попавших под действие аварии и нормальных режимов функционирования предприятия. Соматический риск формируют возникшие экологические заболевания у персонала и населения в зоне влияния вредных производств. Далее по алгоритму производится оценка коллективного риска, а по нему ущербы и стоимости страховых сумм и величины страховых взносов для персонала и населения в зоне влияния опасных производств. Необходимо также осуществлять мониторинг ситуации и возможные контрмеры по защите персонала, населения и ОС.

Экологический ущерб, в свою очередь, может быть разбит на ущербы для предприятия, ущерб для ОС и особо для урбанизированных территорий (рис. 6.3). Для этих оценок потребуются специальные экологические нормативы для оценки вреда для территорий и биоты их населяющей. Многие из этих нормативов еще предстоит обосновать и разработать.

На рис. 6.3. представлены основные составляющие экологического ущерба.
6.3. Использование страховой защиты персонала
Страховая защита опирается на следующие принципы:
1. Все виды деятельности, требующие лицензирования должны будут сопровождаться страховкой. (Возможно в будущем).
2. Страхование каждого конкретного варианта работы с опасными технологиями и материалами требует разработки специальных математических моделей для оценки рисков и ущербов для персонала, населения и окружающей среды.
3. Математические модели должны учитывать распределение и перерааспределение поллютантов в экосистемах в зоне влияния опасного производства и вида деятельности.
4. С помощью таких моделей оцениваются все виды ущербов, особенно в ситуациях проектных и запроектных аварий на опасных предприятиях, технологиях и видах деятельности.
5. На основе моделей разрабатывается методика оценки ущербов и страхования для каждого конкретного вида деятельности.
6. По методике рассчитываются величины всех ущербов и страховые суммы и выплаты по любым видам деятельности.
7. Этим обеспечивается высокая степень страховой защиты персонала, населения и окружающей среды.

Это достигается следующим образом:
1. Получение лицензии для ряда видов деятельности, особенно, с использованием источников радиации требуют оформления страхового полиса (это касается, прежде всего, добыч урановых руд, проведения гамма-каротажа и нейтронного каротажа скважин и т.п.).
2. Очевидно, что и другие виды деятельности, требующие лицензирования, также должны будут сопровождаться страховкой. (Возможно в будущем).
3. Страхование каждого конкретного варианта работы с опасными технологиями и материалами требует разработки специальных математических моделей для оценки рисков и ущербов для персонала, населения и окружающей среды.
4. Математические модели должны учитывать распределение и перераспределение поллютантов в экосистемах в зоне влияния опасного производства и вида деятельности.

5. С помощью таких моделей оцениваются все виды ущербов, особенно в ситуациях проектных и запроектных аварий на опасных предприятиях, технологиях и видах деятельности.

6. На основе моделей разрабатывается методика оценки ущербов и страхования для каждого конкретного вида деятельности.

7. По методике рассчитываются величины всех ущербов и страховые суммы и выплаты по любым видам деятельности.

8. Таким образом, достигается высокая степень страховой защиты персонала, населения и окружающей среды.

6.4. Алгоритм расчета ущерба от экологических последствий аварий на опасных производствах и оценка страховых сумм для ликвидации таких аварий

Блок – схема примерного алгоритма расчета ущербов от аварий на экологически опасных производствах состоит из следующих составляющих:

1. Классификация экологически вредных и опасных производств конкретного региона на примере Крыма.

Рассмотрим для примера в качестве исследуемой экосистемы – севастопольская бухта – порт - со стоянками кораблей (военных и гражданских) и местами разгрузки.

2. Выбор списка основных прототипов экологически вредных и опасных производств региона Крыма (Список не более 10 прототипов – химические, военные, пищевые, горные и т.д.).

Прототип – крупный морской порт (химические, в частности – нефтные протечки и выбросы), военные загрязнения.

3. Классификация аварий по каждому из прототипов. Выбор наиболее вероятных аварий, и самых тяжелых. Оценка вероятностей аварий (расчетная оценка и реальные оценки).

А) Вытекание в бухту большого количества нефти;
Б) Крупная эрозия берегов бухты;
В) Взрыв военного судна.

4. Для каждого из выбранных прототипов и аварий на них – расписываются сценарии аварий.

5. Путем воздействия аварий выбранного сценария на прототип на персонал, население и окружающую среду (ОС). Нормативная база факторов влияния аварии на персонал, население и окружающую среду. ПДК и оценки стоимости ущерба от загрязнений на уровне ПДК разных факторов и выше.

Влияние на персонал, пожароопасность, отравления акватории – нефтяными выбросами.

6. Модель и расчет распространения аварийных выбросов и влияния от аварии на выбранном прототипе производства по сценарии реальной максимально-возможной аварии. Разработка модели.

7. Расчет ущерба для персонала, населения и ОС от выбранной максимально возможной аварии на прототипе экологически вредного и опасного производства в регионе Крыма. Расчет ущерба.

8. Расчет затрат на ликвидацию последствий от выбранной максимально возможной аварии на прототипе экологически вредного и опасного производства в регионе Крыма. Затраты на дезактивацию. Затраты на ликвидацию аварии и ее последствий.

9. Формирование списка основных прототипов экологически вредных и опасных производств региона Крыма и максимально возможных аварий на них.

10. Методика оценки страховой суммы и страховых взносов для основных прототипов экологически вредных и опасных производств региона Крыма и максимально возможных аварий на них.

Расчет страховой суммы и страховых взносов от данной аварии.

Такой расчет состоит из следующих разделов:

1. Составить список и классификацию экологически вредных и опасных производства и территорий в регионе Крыма (и конкретно, например, г. Севастополь).

2. Составить список, найти статистику и оценить вероятности аварий производств, установок на территории г.Севастополя (и Крыма в целом).

3. Обосновать и составить список и характеристики прототипов экологически вредных и опасных производства и территорий в регионе Крыма (и конкретно г. Севастополя).
4. Сформировать модели для оценки влияния и ущербов аварий на выбранных прототипах экологически вредных и опасных производств и территорий в регионе Крыма (и конкретно г. Севастополя).

5. Разработать методики оценки влияния аварий на персонал, население и ОС и затрат на ликвидацию последствий. Методика оценки суммарного ущерба от аварий на выбранных прототипах и сценариях максимально возможных аварий.

6. Разработать методику оценки страховой суммы и страховых взносов в создаваемой системе обязательного экологического страхования для региона Крыма и других регионов.

6.5. Экологическое нормирование, риск и страхование[2]

В современной экологии есть три строго связанных друг с другом проблемы:

1. Проблема создания принципов и системы нормативов для экологического нормирования, которое вместе с гигиеническим нормированием должно лечь в основу оценок вреда окружающей среды, включая человека, от вредных производств.

2. На основе системы экологических нормативов возможно и нужно создать метод оценки экологических рисков от поражения и загрязнения окружающей среды. Необходимо оценивать риски для биоты экосистем и, конечно, риски для людей, использующих ту или иную экосистему и территорию.

3. После решения таких проблем необходимо сформировать метод оценки ущербов от вредных производств в режиме их нормальной эксплуатации и возможных аварий.

Обсуждению этих аспектов проблемы и посвящен данный раздел книги.

В случае радионуклидных выбросов и сбросов в окружающую среду встает задача определения предельных значений поступления радионуклидов в экосистему, когда еще в результате их действия не следует серьезных изменений в самой экосистеме.

<table>
<thead>
<tr>
<th>Номер дозового предела</th>
<th>Зона</th>
<th>Мощность дозы, Гр/год</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Зона радиационного благополучия</td>
<td>< 0,001–0,005</td>
</tr>
<tr>
<td>2</td>
<td>Зона физиологической маскировки</td>
<td>≥ 0,005–0,05</td>
</tr>
<tr>
<td>3</td>
<td>Зона экологической маскировки</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>наземные животные</td>
<td>≥ 0,05–0,4</td>
</tr>
<tr>
<td>3.2</td>
<td>гидробионты и наземные растения</td>
<td>0,05–4</td>
</tr>
<tr>
<td>4</td>
<td>Зона явных экологических эффектов</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>а) драматических для наземных животных</td>
<td>≥ 0,4</td>
</tr>
<tr>
<td>4.2.</td>
<td>б) драматических для гидробионтов и наземных растений</td>
<td>≥ 4</td>
</tr>
<tr>
<td>4.3</td>
<td>в) катастрофических для животных и растений</td>
<td>≥ 100</td>
</tr>
</tbody>
</table>

Из данной шкалы следует, что реальным дозовым пределом для поступления и "складирования" радионуклидов природного и техногенного происхождения в экосистемах и их компонентах является мощность дозы, не превышающая 0,4–4 Гр/год, когда можно ожидать начала проявления явных экологических эффектов (сукcesий) на уровне биоты экосистем.

Нетрудно рассчитать дозовые нагрузки от излучений альфа-, бета -, гамма-радионуклидов для композиции Кыштымского, Чернобыльского или Фукусимского выброса. По нашим оценкам, суммарная доза в 0,4–4 Гр/год соответствует концентрации 137Cs около 1000 кБк/л (кт) в экосистеме или ее элементах (наземные растения и гидробионты) и около 200 кБк/л (кт) для экосистемы с включением наземных животных, что в среднем составляет 600 кБк/кг. При комбинировании загрязнении разными радионуклидами доля каждого из радионуклидов будет соответственно ниже.

Почему необходимо руководствоваться этими величинами предельно допустимых выбросов и сбросов в экосистему? На основании данных шкалы можно ожидать, что при концентрациях радионуклидов в экосистемах и их элементах выше указанных пределов возможно проявление заметных экологических эффектов, включающих искажение экологической структуры биоты экосистемы, потерю и/или изменение радиоустойчивости отдельных видов,
угнетение роста биомассы в биоценозах и даже гибель экосистемы ("рыжий лес") [4]. Такая ситуация может привести к непредскаzuемым изменениям значений факторов радиоемкости экосистемы и ее элементов, к ее разрушению, а как результат – к новому перерастворению радионуклидов.

Таким образом, если мы хотим сохранить благополучие в экосистемах, нам необходимо не допускать превышения этих пределов в экосистемах в целом и/или конкретно в их биотических компонентах. Следует подчеркнуть, что существующая система нормирования сбросов и выбросов радионуклидов ядерными предприятиями практически не учитывает этих важнейших ограничений. Однако их необходимо учитывать для создания реальной системы экологического нормирования. Рассмотрим конкретные примеры оценки допустимых сбросов и выбросов для экосистем различных типов.

6.5.1. Оценка допустимых сбросов и складирования радионуклидов и рисков в пресноводном водоеме

Исходя из моделей радиоемкости пресноводного водоема [4, 5], критическим биотическим элементом данной экосистемы могут быть население донных отложений (бентос) и/или население водной толщи. Формулы для оценки факторов радиоемкости донных отложений и биоты воды получены нами в работе [5]. Для радиоемкости донных отложений, а значит и бентоса, может быть использована формула (6.1), в которой для оценки фактора радиоемкости бентоса в отношении 137Cs использованы следующие значения: $h = 0,1$ м; $k = 1000$, $H = 4$ м. Тогда F – фактор радиоемкости для донных отложений – составляет 0,9 для 137Cs. Для оценки фактора радиоемкости биоценоза водной толщи пресноводного водоема нами предложена следующая выше упомянутая формула:

$$F_b = \frac{pHK_b}{pHK_b + kh + H}$$ \hspace{1cm} (6.1)

где p – биомасса гидробионтов в воде (заметной считается величина биомассы 1–10 т/м3; K_b – коэффициент накопления биоты водоема, может достигать 1000–100000 единиц. В этом случае F_b – может составлять от малого значения радиоемкости – 0,05 (для малых концентраций биоты) до очень высокого значения – 0,97, когда практически все радионуклиды сосредоточены в биотической составляющей водоема. Используя формулу (6.1), нами была построена модель и формула для оценки радиоемкости каскада водохранилищ [4; 5; 8]:

$$F_C = 1 - \prod_{i=1}^{n}(1 - F_i).$$ \hspace{1cm} (6.2)

Эта модель радиоемкости была применена нами для оценки радиоемкости каскада Днепровских водохранилищ и оправдалась в реальных исследованиях после Чернобыльской аварии. На базе приведенных выше моделей и формул, а также, знак оценку предельно допустимых концентраций радионуклидов в элементах экосистемы, возможно оценить критические сбросы и выбросы в экосистемы описанного типа:

1. Для бентоса донных отложений пресноводного водоема предельно допустимый сброс радионуклидов в водоем (N_k) не должен превышать:

$$N_k < L_h S / k F,$$ \hspace{1cm} (6.3)

где L_h – предел концентрации радионуклидов в водной биоте – 1000 kBk/кг, S – площадь водоема, остальные обозначения приведены выше.

2. Для водного населения (планктон, нейтостон) в толще воды предельно допустимый сброс радионуклидов не должен превышать (N_b):

$$N_b < L_{HS}/K_b (1 - F),$$ \hspace{1cm} (6.4)

где использованы обозначения формул (6.1; 6.2). Для конкретного пресноводного водоема, где $S = 2$ км2, $H = 4$ м, $K_b = 1000$, $F = 0,7$, то критическая величина сброса радионуклидов составляет не более: $N_b < 30$ ТБк в воду всего водоема. В то же время критическая
величина сброса радионуклидов в водоем для его бентоса оценивается по формуле (6.3) – \(N_k < 110 \text{ ГБк} \). Эта величина в 90 раз меньше, чем допустимый сброс, оцениваемый для всего населения водной толщи водоема.

В общем случае оценка предельно допустимых сбросов в водоем по двум критическим звеньям – населению водной толщи и бентосу – определяется по следующей формуле:

\[
N_k = \frac{hKh(1-F)}{Nb} HkF. \tag{6.5}
\]

Из формулы 6.5 следует, что величина оценки экологического норматива – величины допустимого сброса радионуклидов в водоем, определяемая по возможному влиянию на состояние бентоса, значительно (в 10–100 раз) меньше, чем оценка по влиянию на состояние населения водной толщи водоема (фито- и зоопланктон, высшие растения в толще воды, нектон, нейстон и плеистон). Следовательно, в качестве экологического норматива следует выбрать наименьший, т.е. 110 ГБк для данного водоема в целом.

3. Аналогичные оценки предельно допустимых сбросов можно сделать и для других типов экосистем. В частности, в системе каскадов водоемов (типа днепровского каскада) критическим по дозовым нагрузкам является первое водохранилище – Киевское. В донных отложениях верхней части Киевского водохранилища встречаются уровни содержания радионуклидов в донных отложениях, достигающие 370 кБк/кг и больше. Это означает, что для верхней части водохранилища уровень осуществленного сброса достигает критического значения, и для обеспечения безопасности населения бентоса можно ожидать заметных экологических последствий. Теоретически оцениваемый предельно допустимый сброс радионуклидов в Киевское водохранилище составляет всего в 59 ТБк, в то время как реальный запас радионуклидов \(^{137}\text{Cs}\) в донных отложениях определен по натурным измерениям в 260 ТБк, что уже значительно превышает предельно допустимый сброс.

4. Наши оценки критических уровней радионуклидного загрязнения лесных экосистем, где основная масса (до 90 %) радионуклидов концентрируется в подстилке, составляет плотность загрязнения в \(N_k < 7400 \text{ кБк/м}^2 \), если \(L = 1000 \text{ кБк/кг} \) для лесной флоры и фауны и для лесной подстилки. Для луговых экосистем наши оценки \(N_k < 22,2 \text{ МБк/м}^2 \) (80–90 % радионуклидов на непаханных лугах содержится в 5-сантиметровом слое дернины). Для вспаханных лугов (глубина вспашки 20 см), дозовая нагрузка на биоту луга и поля несколько меньше (за счет разбавления), и тогда здесь оценивается \(N_k \) по 74–92 МБк/м².

В биоценозах морских экосистем (прибрежное мелководье, на которое собственно и приходится основная биопродуктивность) при средних концентрациях биомассы в 10 г/м², радиоемкость достигает 0,9–0,99. Тогда сброс больших масс воды с содержанием радионуклидов 10–100 кБк/л может приводить к радионуклидному загрязнению сообщества биоты в 1000 кБк/кг, что выше экологически допустимого уровня.

6.5.2. Оценка предельно допустимых сбросов и складирования в морских экосистемах

Разработанная нами модель оценки радиоемкости морской экосистемы позволяет оценить время и место ожидаемого (в динамике миграции) концентрирования радионуклидов в некоторых элементах морской экосистемы. По формуле (6.6) может быть оценен фактор радиоемкости морской экосистемы (Fs)

\[
F_s = 1 - \prod_{i=1}^{m} P_i = 1 - P_s, \tag{6.6}
\]

где \(m \) – число элементов в морской системе; \(P_i \) – вероятность стока радионуклидов из соответствующего элемента морской экосистемы за год (P1 – сток из лесной экосистемы, P2 – по каменистой опушке, P3 – из луговой, а P4 – из экосистемы террасы в озере). Практически это означает, что параметры миграции и концентрирования радионуклидов в лесу (вершина морской экосистемы), на опушке, на пойме и/или в озерах определяют в конечном итоге предельно допустимый сброс радионуклидов в данную экосистему. Для случая сброса в лесную экосистему \(N_k(f) \) получена следующая формула:

\[
N_k(f) < N_k(l)/P_s T, \tag{6.7}
\]

306

307
Строго говоря, экологический норматив зависит от структуры экосистем. Чем ближе к критическому блоку (озеру) находится подсистема, и чем выше вероятность стока, тем ниже экологический норматив допустимого загрязнения. Практически это означает, что исходное радионуклидное загрязнение территории может быть достаточно благополучным для исходной ситуации загрязнения (например, леса), но в результате поверхностного стока и/или миграции радионуклидов в каком-либо критическом элементе экосистемы может произойти значительное концентрирование радионуклидов, а значит, может быть превышен уровень предельно допустимого загрязнения в 100 кБк/кг. Таким образом, началное благополучие в радионуклидном загрязнении экосистемы может означать последующее неблагополучие в будущем, в зависимости от скоростей процессов переноса и концентрирования радионуклидов. Иначе говоря, экологически обоснованный предельно допустимый сброс радионуклидов в экосистему зависит не только и не столько от исходного загрязнения (сбросов и выбросов), но и от характеристики динамики радиоемкости конкретных типов экосистем. Очевидно, что в условиях радионуклидного загрязнения в результате аварии на ЧАЭС значительных территорий, которые богаты озерами, малыми реками, болотами, во многих из них можно ожидать превышения расчетного предельно допустимого уровня концентрации радионуклидов – Nk для биоты их донных отложений. Особенно это касается поверхностных водоемов и водотоков 30-км зоны ЧАЭС.

Проводимые в этой зоне обширные исследования показывают, что на малых озерах зоны уже наблюдается превышение уровня радионуклидного загрязнения – 370 кБк/кг в донных отложениях, а как следствие могут регистрироваться изменения в характеристиках популяций видов и целых сообществ, обитающих в данных отложениях этих озер. Мы полагаем, что данная область наблюдения реальных и ожидаемых дальнейших эффектов в бентосных организациях, важных для становления системы экологического нормирования, заслуживает самого пристального внимания.

Таким образом, мы можем сделать следующие выводы.

1. Развиваемая нами теория радиоемкости экосистем позволила адекватно описать закономерности распределения радионуклидов для разных типов экосистем водоемов и суши.

2. На основе шкалы дозовых нагрузок на экосистемы и их элементы удалось оценить предельные концентрации радионуклидов при

где Nk(1) для конкретного озера оценивается в 110 ГБк, T – количество лет сброса (нами использованы оценки на 20 лет стока).

Для примера склоновой экосистемы мы выбрали простейший вариант: лес – каменистая осьпы – луг – терраса – озеро. Параметры радиоемкости данной склоновой экосистемы приведены в работе [5]. Расчетные кривые динамики перераспределения радионуклидов в такой модельной экосистеме при исходном загрязнении леса в 3,7 ГБк проанализированы в работе [4] (в расчетах для простоты радиоактивный распад не учитывается). Очевидно, что по динамике перераспределения радионуклидов в данной склоновой экосистеме, лимитирующим звеном служат донные отложения конечного элемента системы – озера. Видно, что практически 80 % исходного запаса радионуклидов на водосборе озера, в динамике концентрируются в донных отложениях озера. При S = 2 км², Nk по формуле (6.3) для такого озера оценивается в 110 ГБк; это означает, что общий запас радионуклидов на водосборе озера для выдерживания экологического норматива для бентоса донных отложений озера не должен превышать 185–222 ГБк. При площади водосбора озера например в 10 км² плотность загрязнения не должна превышать 370 кБк/км² (10 КБк/км²), что достаточно мало, если сравнить с существующими уровнями радионуклидного загрязнения территории 30-км зоны ЧАЭС и других территорий Украины, Беларуси и России.

Нетрудно вывести формулы для оценки радионуклидного загрязнения каждой камеры, опираясь на формулу (6.6). Так, если радионуклидные выпадения попали только на лес, то уровень радионуклидного загрязнения (на 20 лет стока) не должен превышать 3,1 ГБк, для загрязнения каменистой осьпы – не более 309 ГБк, допустимый сброс на луговую экосистему не должен превышать 185 ГБк, а для экосистемы террасы значение допустимого загрязнения в целом не должно превышать 55 ГБк.

Если данная склоновая экосистема загрязнена равномерно, то общее загрязнение всей экосистемы не должно превышать 43 ГБк. Даже при относительно малой площади экосистемы в 10 км², плотность загрязнения не должна превышать 43 кБк/км², что достаточно мало по сравнению с уровнями загрязнения территорий после аварий на ЧАЭС. Четко видно, что уровень допустимых загрязнений заметно уменьшаются по мере приближения места загрязнения к оконечному элементу - озеру.
водной культуре растений показала, что по ряду важнейших и определяющих показателей состояния биоты, эффект от разных концентраций такого тяжелого металла, как кадмий, эквивалентен соответствующим дозам внешнего гамма-облучения. Работает такое количественное соотношение - 3-5 мкМоль/лitr кадмия в среде соответствует, примерно 1 Гр дозы острого гамма-облучения биоты. Есть основания полагать, что такие соотношения могут быть установлены практически для всех токсичных и вредных факторов среды. Следует отметить, что действующий гигиенический норматив – ПДК по кадмию в воде – 0,1 мг/л (1 мкМ/л) – соответствует дозе гамма-облучения 0,2-0,3 Гр. Эти дозы, по нашим оценкам, близки к дозам предлагаемого экологического норматива на радиационные факторы – 0,4-4 Гр/год. Таким образом, можно полагать, что действующие гигиенические нормативы и разрабатываемые экологические нормативы будут достаточно близки друг другу. Как показали наши исследования, в случае серьезных перераспределений поллютантов по биоте экосистем, экологические нормативы могут быть даже более жесткими, чем гигиенические нормативы.

После создания такой эквидозиметрической системы экологических нормативов возможно, для каждого конкретного вида производства может быть установлен спектр вредных факторов и степени их воздействия на биоту экосистем, в эквидозиметрических суммарных дозах облучения.

Для этого потребуется установить реальные и/или рассчитать, ожидаемые в случае аварий и инцидентов, концентрации поллютантов попадающих в окружающую среду. Затем следует сравнить их с действующими гигиеническими ПДК и определить суммарную приведенную концентрацию.

Пусть имеется 1 - поллютантов в концентрациях Сi, а соответствующие гигиенические ПДК для них составляют ПДКi. Тогда суммарное количество ПДК поллютантов составят:

Суммарное количество ПДК = \sum Сi/ПДКi. \hspace{1cm} (6.8.)

Если эта величина значительно больше 1, то очевидно гигиеническое неблагополучие производства для человека. Полагаю, что если в результате функционирования данного производства - в норме или после аварии (реальной или гипотетической) достигается значение ПДК сум. = 10 (десяти – кратное превышение ПДК), то
1. Первый принцип - оправданность деятельности по управлению риском, которая должна согласовываться со стратегической целью управления риском, формируемой как стремление к обеспечению материальных и духовных благ при обязательном условии: Практическая деятельность не может быть оправдана, если выгоды от этой деятельности в целом не превышает вызываемого ею ущерба.

2. Второй принцип – оптимизация защиты по критерию среднестатистической ожидаемой продолжительности предстоящей жизни в обществе. Оптимальным считается вариант сбалансированных затрат на продление жизни за счет снижения уровня риска и за счет выгод, получаемой от хозяйственной деятельности.

3. Третий принцип - необходимость учета всего спектра существующих опасностей; вся информация о принимаемых решениях по управлению риском должна быть доступна широким слоям населения.

4. Четвертый принцип - учет требований о не превышении предельно допустимых экологических нагрузок на экосистемы. По существу, он состоит в том, что обеспечение безопасности человека, живущего сегодня, следует достигать путем реализации таких решений, которые не подвергают риску способность природы обеспечить безопасность и потребности человека будущих поколений.

6.7. Математическое определение риска
Для оценки степени опасности важны не только вероятность (частота) ее появления, но и тяжесть последствий для индивидуума, общества и окружающей среды.
Вводят понятие риска – Р, определяемого как произведение вероятности ‒P неблагоприятного события (аварии, катастроф и т.п.) и ожидаемого ущерба – Y в результате этого события:

\[R = P \cdot Y \] \hspace{0.5cm} (6.8)

или

\[R = \Sigma P_i Y_i \] \hspace{0.5cm} (6.9)

Если могут быть иметь место несколько (i) неблагоприятных событий с различными вероятностями - P_i и соответствующими им ущербами Y_i.
Заключение и выводы

Экологическая страховая защита населения, персонала и окружающей среды является основным средством защиты от аварий и катастроф природного и техногенного происхождения. В силу сложности описания, понимания и прогнозирования экологических процессов, особенно в ситуациях аварий и катастроф, основным средством защиты является оценка рисков, ущербов и экологическое страхование от этих рисков. Радиационный риск в размере 10^-4 в год, на Украине оценивается в деньгах примерно в 4000 долларов США, согласно закону о радиационной защите населения. Это дает нам основание применить эту оценку ко всем радиоэкологическим рискам, которые возникли после аварии на ЧАЭС, и могут возникать в будущем. Используя данное денежное выражение для экологических рисков в радиационных ситуациях, можно предложить следующий алгоритм страховой защиты населения, персонала и окружающей среды в зоне влияния радиационных технологий:

1. Построить модели поражения и повреждения экосистем (включая человека) при различных сценариях нормального и аварийного функционирования конкретной радиационной технологии на реальной территории зоны ее влияния.

2. На основе модели и натурных измерений провести расчет и анализ экологических рисков для населения, персонала и окружающей среды в зоне влияния исследуемых радиационных технологий.

3. На основе моделей и натурных данных провести оценку ущербов в результате нормального и аварийного режимов функционирования радиационных и других опасных технологий, для населения, персонала и биоты окружающей среды, и перевести их в денежное выражение. Можно исходить из соотношения, любой риск - 10^-4, по стоимости оценивается в 4000 $ США.

4. Установить концептуальных виновников формирования экологических рисков, а при их отсутствии ответственным за риск является государство.

5. На этой основе следует провести расчет величины стоимости страхового полиса по известной формуле: сумма страхового полиса на год = ущерб, умноженный на величину риска за год.

6. Оптимальным является приобретение страховых полисов для персонала (делают владельцы и администрация предприятия) и для населения в зоне влияния опасных технологий (осуществляют владельцы предприятий или государство, выдавшее лицензию для конкретного предприятия с радиационной или другой опасной технологией).

Следует подчеркнуть, что подобный алгоритм может быть с успехом применен и для других опасных технологий (электростанций, химических механических и других производств).

Особенно, сложно оценить ущерб в случае воздействия на биоту экосистем. Для этого еще следует вести средства и методы оценки стоимости повреждений земли, лесов, лугов, озер. Эта методика на Украине пока не разработана. Для оценки ущербов для людей из населения и персонала существуют вполне приемлемые методики.

Литература
7.1. Выбор и оценка эффективности контрмер на основе теории и моделей радиоемкости

История аварий на ядерных предприятиях знает множество планируемых и реализованных контрмер, которые с разной эффективностью могут применяться для ликвидации последствий аварий [1]. Большое разнообразие контрмер было реализовано и в ходе аварии на ЧАЭС и ликвидации ее последствий. Основная задача, которую лежит в основе выбора контрмер и защитных мероприятий - дезактивация, снижение индивидуальных доз для персонала и населения, и может быть уменьшение коллективных доз облучения населения [2, 3].

При этом практически нигде и никогда не оценивалось влияние на состояние экосистем. Ряд реализованных контрмер, таких как захоронение «рыжего леса», механическое снятие верхнего радиоактивного слоя грунта (бульдозеры, скреперы, грейдеры) - привели к полному разрушению лесной и почвенных экосистем, т.е. к образованию пустынь, которые потом потребовалось закреплять и проводить на них залесение.

Нам представляется важным и необходимым провести анализ и классификацию основных контрмер на основе теории и моделей радиоемкости, с тем, чтобы оценить, как защитные мероприятия влияют на параметры радиоемкости экосистем, и определить оптимальные схемы применения контрмер.

7.2. Типовые экосистемы и контрмеры на них. Степень влияния защитных мероприятий на параметры радиоемкости.

7.2.1. Контрмеры в агрозэкосистемах

Начнем рассмотрение с обширного спектра контрмер применяемых в сельском хозяйстве. В таблице 7.1 приведена система основных контрмер в сельскохозяйственном производстве и проведена оценка степени их влияния на: величину индивидуальной дозы облучения (внешней и внутренней); на величину коэффициента дезактивации-Кд; по влиянию на величину коллективной дозы для населения. В таблице 7.1, мы приводим оценку степени влияния контрмер на величину фактора радиоемкости экосистемы.

Примером эффективного использования контрмер, являются результаты их реализации на примере с. Милячи Дубровицкого района Ровенской области.

Таблица 7.1. Общие характеристики реализованных контрмер на примере с. Милячи (Дубровицкий район, Ровенская область, 1988 – 1993)

<table>
<thead>
<tr>
<th>Название КМ</th>
<th>Площадь (га)</th>
<th>Количество голов</th>
<th>Внесение (тонн)</th>
<th>Кд</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>В коллективных хозяйствах</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Глубокая вспашка</td>
<td>990</td>
<td>80</td>
<td>240 штук</td>
<td>2,2-2,8</td>
<td>1</td>
</tr>
<tr>
<td>Внесение высоких норм удобрений</td>
<td>720</td>
<td>150</td>
<td>45</td>
<td>1,5-1,9</td>
<td>1</td>
</tr>
<tr>
<td>Известкование почв</td>
<td>420</td>
<td>50</td>
<td>7 кг</td>
<td>2-3</td>
<td>1</td>
</tr>
<tr>
<td>Улучшение пастбищ</td>
<td>250</td>
<td>0,5</td>
<td>3</td>
<td>18-20</td>
<td>0,9</td>
</tr>
</tbody>
</table>

| В частных хозяйствах |
|----------------------|--------------|------------------|-----------------|----|---|
| Применение turf-cutter на пастбищах | 0,5 | 3 | -- | 18-20 | 0,9 |

Оценивая представленные в таблице 7.1., контрмеры можно видеть, что их эффективность различна. Некоторые из них (закрепление поверхности, снятие верхнего слоя почвы)- влияют на снижение индивидуальной дозы. При этом не отмечено существенного снижения коллективной дозы. Лишь некоторые из контрмер оказывают влияние на величину коллективной дозы - применение turf-cutter, фитодезактивация. Остальные (внесение удобрений, глубокая
вспашка) приводят к разбавлению радионуклидов в урожае, снижают величину индивидуальной дозы, растягивают процесс формирования дозы, практически не влияя на величину конечной коллективной дозы.

Следует подчеркнуть, что защитные мероприятия, широко применяемые в сельском хозяйстве, как правило, не изменяют (не ухудшают) качество агроэкосистемы, и тем самым не снижают значений фактора радиоемкости (таблица 7.1.). Исключение составляет применение turf-cutter (специальной машины для снятия дернины (3-5 см слоя)) (фото 7.1. и 7.2.). При этом теряется часть плодородного слоя, что и вызывает некоторое снижение фактора радиоемкости почвенного раствора (F = 0,9). Особо опасно для экосистемы механическое снятие плодородного слоя (10 - 15 см), с помощью бульдозера и другой тяжелой техники. Для условий Полесья это означает обнажение песков, и почти полная утрата экосистемой биоты почвенного плодородного слоя (F = 0,05). Более того, после обнажения песка на промплощадке ЧАЭС потребовались специальные контрмеры по закреплению, пылеподавлению и по восстановлению растительности.

![Фото 7.1. Применение TURF CUTTER для снятия дернины на лугу.](image)

Разнообразие эффективных контрмер в конкретном селе Ровенской области (с. Милячи) представлено в таблице 7.1. Эти контрмеры, примененные как в коллективных хозяйствах, так и в частных, характеризуются экологичностью и отсутствием заметного снижения радиоемкости агроэкосистем. Это означает, что используемые в сельскохозяйственном производстве контрмеры, в основном, не разрушают экосистему и не ухудшают характеристики их радиоемкости.

7.2.2. Контрмеры в лесных экосистемах

Контрмеры в лесных экосистемах не были реализованы на Украине в большом объеме [2]. Из крупных контрмер, можно выделить сложную процедуру захоронения "Рыжего леса". Очевидно, что эта процедура привела к практически полному разрушению лесной экосистемы, и фактор ее радиоемкости упал практически до "0".

В тоже время временное захоронение радиоактивного леса под песчаной подушкой привело к снижению дозы внешнего облучения для персонала, занятого в ликвидации, но создало во времени опасный долговременный источник радионуклидного загрязнения почвы, поверхности и грунтовых вод, и тем самым только "отодвинуло" во времени серьезную радиоэкологическую проблему.

![Фото 7.2. Пласт подрезанной дернины для дезактивации луга.](image)
Обсуждались и другие контрмеры для лесных экосистем. Механическое удаление лесной подстилки, содержащей в лесных экосистемах до 90% радиоактивности. Известно, что полное удаление лесной подстилки приводит к высыханию леса, и к его гибели со временем (F = 0). Практически эту контрмеру можно использовать только для подготовки леса к полной вырубке и ликвидации. Реально экологически обоснованных, не нарушающих характеристики радиоемкости, контрмер в лесных экосистемах применять, пока не удалось.

7.2.3. Контрмеры на водных экосистемах

Контрмеры на водных экосистемах были реализованы лишь в очень небольшой части [2,3]. После аварии Киевское водохранилище, практически превратилось в пруд-отстойник ЧАЭС, где F = 0,8 и донные отложения содержат до \(10^5 \) К/кг радионуклидов. По нашим оценкам при данном уровне радионуклидного загрязнения существует реальная угроза благополучию бентоса водохранилища, где превышены экологически допустимые уровни радионуклидного броска и депонирования. Из реализованных на водохранилище контрмер, можно отметить попытку "прорезать" попор водозащиты специальные "донные ловушки". Показано, что эти ловушки не сработали эффективно. И это потому, потому что при этом не может быть увеличен фактор радиоемкости донных отложений, т.к., не меняется активная толщина ила и, конечно, не меняется Кн – коэффициент накопления радионуклидов илами. На малых реках зоны было построено в 1986 г. около 100 фильтрующих дамб-запруд, но они не смогли уловить заметные количества радионуклидов из потока стоковых, дождевых и талых поверхностных вод в теле плотин ни в 1986 г. ни 1987 г. Дело в том, что тело плотин, заполненное сорбентами и гравием, способно удержать лишь малую долю радионуклидов, из-за их не избирательности. При этом большая часть радионуклидов просто фильтровалась через эти запруды, и далее уходила в водотоки.

7.3. Выбор и оптимизация контрмер на основе моделей и теории радиоемкости экосистем различного типа

7.3.1. Континентальные экосистемы

Начнем рассмотрение с континентальных экосистем. Низкая эффективность построенных фильтрующих дамб в 10 км-зоне ЧАЭС, понятна, потому что подпор воды, создаваемый дамбами снижает фактор радиоемкости почвы (F = 0,9 - доля радионуклидов, удерживаемая в данном компоненте экосистемы) и сводит ситуацию к радиоемкости донных отложений (F = 0,7). При этом заметная часть радионуклидов из почвы переходит в водную фазу, а радиоемкость тела фильтрующей плотины слишком низка, чтобы задержать заметное количество радионуклидов из потока поверхностных вод. Установлено, что фактор радиоемкости таких фильтрующих дамб не превышает F = 0,1.

Разработанные нами модели оценки радиоемкости системы каскада водоемов, позволяют предложить, как высокоэффективную контрмеру, для данных ситуаций - создание именно каскадной системы прудов. Предлагается, поверхностный водоток, ручей - перекрыть системой каскада из трех малых подпорных дамб - дамбы невысокие, переливные и после заполнения верхнего пруда, вода переливается в следующий, и затем в третий пруд. При достижении медленного тока воды в этой системе, фактор радиоемкости каждого из прудов не превышает 0,5 - 0,6. При этом, в соответствии с моделью радиоемкости такого каскада составит 0,8 - 0,9. Таким образом, данный каскад способен удержать в донных отложениях водоемов до 80-90% радионуклидов (Кд = 10 - коэффициент дезактивации или ремедиации). Если внести в эти пруды высокоактивные и/или, то можно увеличить радиоемкость каскада, до 0,99. Такая высокоэффективная система может быть заранее создана на опасных по стоку территориях, или оперативно построена за короткий срок.

Рассмотрим ещё один пример типовой континентальной экосистемы - склоновая экосистема. Наши исследования на полигонах "Новоселки" в склоновой экосистеме на берегу р. Уж «лес - опушка - терраса – река» показали отчетливое концентрирование радионуклидов 137Cs на краю террасы. Это явление может быть положено в основу реальной контрмеры. Речь идёт о создании на пути наиболее интенсивного концентрирования стока радионуклидов – специальной высокопродуктивной (по биомассе и выносу радионуклидов) террасы и в ней "думать" в почве, а затем сконцентрировать в обильной биомассе (метод фитодезактивации) достаточно большое количество "стекающих" радионуклидов. Расчет динамики перераспределения радионуклидов в типовой склоновой экосистеме, показывает возможность создать высокопродуктивную террасу и...
сконцентрировать в ней более 60 – 70 % стока, и тем самым защитить реки и водоемы, от чрезмерного сброса радионуклидов. Расчеты по модели радиоемкости склоновой экосистемы позволили нам подтвердить возможность и эффективность новой предлагаемой контрмеры.

Следует подчеркнуть, что эффективных контрмер по дезактивации лесов пока не разработано. Собственно высокая радиоемкость лесных экосистем (F = 0,90-0,97) означает, что без разрушения лесной экосистемы (вариант захоронения "Рыжего леса"), трудно дезактивировать территорию. Отсюда следует, что экологическим наиболее приемлемым способом дезактивации леса может служить система "перехвата" радионуклидов, которые поверхностный сток выводит из леса. Типовая ситуация - это когда сброс радионуклидов из лесной экосистемы происходит в ручей или малую речку, протекающую или вытекающую из лесного массива. В этом случае, как показали, наши расчеты по моделям радиоемкости оптимальным, может быть создание, на пути максимального поверхностного стока радионуклидов, системы малых прудов на водотоке. Это позволяет "сконцентрировать" радионуклиды в донных отложениях этих прудов. Расчеты по моделям радиоемкости такой системы показывают высокую эффективность данной защитной контрмеры.

7.3.2. Радиоемкость и контрмеры на водных экосистемах

Реализованные в ходе ликвидации аварии на ЧАЭС, контрмеры на водных экосистемах были проанализированы нами по критериям их влияния на показатели радиоемкости экосистем. Результаты представлены в таблице 7.2.

Проведенный нами анализ эффективности реализованных контрмер на водных экосистемах (таблица 7.2.), показывает их достаточно высокую эффективность. Суммарная экономия коллективной дозы за счет этих контрмер, для населения Украины оценивается в 11 млн. чел-бэр. При этом эффективность контрмер тем выше, чем лучше используется высокая радиоемкость водных экосистем, в частности донных отложений водоохранилищ. Общий принцип выбора оптимальных контрмер для водных экосистем состоит в том, чтобы планируемая контрмера повышала фактор радиоемкости водной экосистемы, или хотя бы не снижала.

<table>
<thead>
<tr>
<th>Таблица 7.2. Контрмеры, реализованные на водных экосистемах. Оценка их эффективности и влияния на фактор радиоемкости</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контрмера</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Регулировка каскада Днепра весной и осенью 1987 г.</td>
</tr>
<tr>
<td>Создание поперечных ям-ловушек по руслу Киевского водохранилища</td>
</tr>
<tr>
<td>Подпорная стена в грунте для защиты Притят от дренажного стока радионуклидов из пруда-охладителя</td>
</tr>
<tr>
<td>Сооружение защитной дамбы на Краснянской пойме р. Притять</td>
</tr>
<tr>
<td>Создание дополнительной водоочистки, водоочистных сооружений и источников питьевого водоснабжения для г. Киева</td>
</tr>
<tr>
<td>Отказ от орошения из каскада Днепра</td>
</tr>
</tbody>
</table>

Таким образом, ландшафты 30-км зоны ЧАЭС представляют собой систему водосборных площадей, лугов, малых рек, и в конечном итоге, большую часть водосборной площади Днепра.
Общий вывод, который может быть сделан - контрмеры эффективны в местах с наибольшей радиоемкостью экосистем, и/или те, которые могут повышать значения факторов радиоемкости экосистем или их элементов.

Гармонизация взаимоотношений Природы и Человека возможна лишь на пути четких реализаций положений экологической этики. Теоретический учет всех возможных последствий влияния загрязнителей на биосферу, теоретических и практических последствий реализации защитных контрмер с опорой на экотонические взаимоотношения Биосферы и Человечества позволяют оптимально выстроить их гармонические связи.

Учитывая эти обстоятельства, можно предложить оптимальную систему реабилитации радиоактивно загрязненных территорий, и, прежде всего почв.

Очевидно, что предложенные здесь принципы, методы и подходы годятся для самых разных экосистем - континентальных и водных и для различных типов загрязнителей (физической, химической и биологической природы).

7.3.3. Фитодезактивация радиоактивно загрязненных почв

Проблемы и перспективы

Идея фитодезактивации или фитодеконтаминации – возможность с помощью растений произвести очистку радиоактивно загрязненных почв существует достаточно давно. Эти идеи обсуждались уже в первых работах по радиокосологи растений (Тимофеев-Ресовский Н.В. и др.) [5]. В истории радиокосологии по отношению к идее фитодезактивации (ФД) сформировались два противоположных подхода:

- ФД принципиально невозможна;
- ФД вполне возможна и достижима.

При этом противники ФД, возможность фитодезактивации почв от ³⁹K еще теоретически допускали, а возможность дезактивации почв от ¹³⁷Cs не допускали в принципе. Основная этого представления понятна. ³⁹K в почвах практически на 70-90 % находится в водорастворимой форме, а ¹³⁷Cs находится в почве, большей частью в связанной биологически недоступной форме. В общем виде с этим представлением об относительно малой подвижности радионуклидов цезия в почве можно согласиться. Но это в принципе, а в
конкретных ситуациях это не всегда так. На наш взгляд это не исключает возможности добыться того, чтобы доля биодоступных радионуклидов цезия была бы достаточной для ФД. Можно утверждать, что проблема ФД почв от \(^{90}\text{Sr}\) решаема и не имеет серьезных научных трудностей, а только технологические аспекты. В тоже время проблема ФД почв от \(^{137}\text{Cs}\) и других радионуклидов чернобыльского выброса, требует серьезной разработки и исследований. Бессмысленно дезактивировать почвы от стронция, если нет методов ФД от цезия. Мы активно занимаемся проблемами ФД почв от \(^{137}\text{Cs}\) и других радионуклидов с 1986 г на Чернобыльских выпадениях [6]. Практически все первые годы исследований наши результаты о принципиальной возможности ФД почв от цезия отвергались и говорили о невозможности этого явления. Но в последние годы, вдруг возник активный и даже агрессивный интерес к этой проблеме. Настало время сделать обзор наших исследований по этой проблеме не на основе голословных утверждений "за и против", а на основе экспериментальных лабораторных и полевых исследований, проведённых нами на Чернобыльских выпадениях, на почвах Украинского Полесья, в частности, на нашем радиоэкологическом полигоне "Буряковка" (фото 7.3.).

7.3.3.1. Пути повышения эффективности фитоздезактивации почв от \(^{137}\text{Cs}\)

Важно подчеркнуть, что основная парадигма дочернобыльской сельскохозяйственной радиологии, состояла в "минимизации" выноса радионуклидов растениями, для снижения дозовых нагрузок на население. Такова основа существующего ведения сельского хозяйства на радионуклидзагрязненных территориях. Мы решили изменить эту формулу и исследовать все факторы и возможности "максимизации" выноса радионуклидов с конкретной целью. ФД - радионуклидзагрязнённых почв Украины. Обратимся к основной формуле определяющей вынос радионуклидов растениями:

\[К_в = (C_g \cdot K_i \cdot B) / A \] (7.1)

где Кв - коэффициент выноса радионуклидов из почв (доля), Ки - коэффициент накопления радионуклида растениями, В - урожай биомассы растения с единицы площади (кг/га, ц/га, т/км\(^2\)), A - величина запаса радионуклидов на единице площади (Бк/м\(^2\), Кн/км\(^2\)), Cg - концентрация радионуклидов в почве. Очевидно, что возможность управления и модификации ФД лежит через эти три параметра. Начнем с рассмотрения возможностей влияния на A - запас радионуклидов в почве.

7.3.3.2. Модификация ФД через влияние на запас радионуклидов в почве

Изменить величину запаса радионуклидов в почве, без участия растений, можно только механическими средствами: бульдозер, скрепер, грейдер и др. Эти методы были широко использованы в ходе ликвидации аварии на ЧАЭС, но они же и приводят к потере верхнего плодородного слоя почвы. Механическое снятие верхнего радионуклидзагрязненного слоя почвы (10-15 см), в Полесье на супесчаных подзолистых почвах, приводит практически к полной потере плодородия и оголению аллювиальных песков. Ясно, что за пределами промплощадок этот метод не пригоден для сельхозугодий Украины. Разве что его можно применять на мощных торфяниках Ровенской области. Как показано нашими исследованиями наиболее оптимально для задержанных участков - это снятие дернины с помощью Turf cutter - машины для подрезания верхнего наиболее загрязнённого (90%) слоя почвы. Но этот метод высокоэффективен только на непаханых угодьях.
Для паханных, после аварии, территорий Украины и Белару-
си, наиболее эффективным методом дезактивации почв может быть
именно ФД. Если трудно повлиять на запас, на величину А - то
можно и нужно повлиять на формы нахождения радионуклидов в
почве. Наиболее эффективный путь, как показали наши исследо-
вания, это увеличение доли биодоступных форм радионуклидов в
почвенном растворе. Реальными методами влияния на повышение
биодоступности радионуклидов 137Cs, по результатам наших
исследований, являются:
a) орошение почв (повышение влажности);
b) внесение необходимой микрофлоры в почву, для перевода
фиксированных форм радионуклидов в биодоступные формы, например внесение в почву силикатных бактерий) [1,2,9];
v) использование оптимальных культур растений – предшест-
веников.
Эти методы были нами широко исследованы и показали свою
eфективность [7].

7.4. Перспективы и значение создания оптимальной
системы контрмер по снижению дозовых нагрузок на население
и биоту

7.4.1. Введение

Все основные и возможные контрмеры и методы дезакти-
vации и ремедиации агроэкосистем представлены в таблице 7.3.
Из таблицы 7.3 можно видеть, что традиционные методы
dезактивации радиоактивно загрязненных территорий являются
эффективными по отношению к снижению индивидуальных доз
для населения, использующего эти территории, и практически не
влияют на величину коллективной дозы. Это происходит потому, что
перемешивание радионуклидов при вспашке, и снижение поступле-
ния радионуклидов в растения, мало влияют на многолетний
суммарный вынос радионуклидов растениями, а значит и на
величину коллективной дозы. Идет растягивание во времени
потребления радиоактивных изотопов населением с продуктами питания.
Если ориентироваться на снижение коллективных доз облу-
чения для популяций определенных регионов Украины, то не вызы-
вает сомнения преимущество таких методов как фитодезактивация
и механическая дезактивация почв с помощью снятия тонкого слоя

Таблица 7.3. Сравнительная эффективность разных
методов дезактивации в агроэкосистемах.

<table>
<thead>
<tr>
<th>Методы дезактивации</th>
<th>Коэффициент дезактивации по величине индивидуальной дозы Кд = 1</th>
<th>Коэффициент дезактивации по величине коллективной дозы Кд = 2</th>
<th>Время для реализации – годы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Закрепление (фиксация) поверхности</td>
<td>1,2</td>
<td>1,2</td>
<td>1</td>
</tr>
<tr>
<td>Снятие дерьмы с помощью turf-cutter</td>
<td>20</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Снятие поверхностного слоя почвы: плугом, бульдозером, скрепером</td>
<td>6 – 8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Глубокая вспашка</td>
<td>2 – 3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Смена типа ведения хозяйства (молодое на мясо)</td>
<td>2 – 3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Внесение повышенных норм удобрений</td>
<td>2 – 3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Фитодезактивация (ФД)</td>
<td>3 – 5</td>
<td>3 – 5</td>
<td>4 – 5</td>
</tr>
<tr>
<td>Известкование кислых почв</td>
<td>1,5 – 2,5</td>
<td>1</td>
<td>1–3</td>
</tr>
<tr>
<td>Улучшение пастбищ</td>
<td>2,5 – 3</td>
<td>1</td>
<td>3–5</td>
</tr>
<tr>
<td>Внесение навоза и сапропеля</td>
<td>1,7 – 1,9</td>
<td>1</td>
<td>1–3</td>
</tr>
<tr>
<td>Использование болосов</td>
<td>2,2 – 2,8</td>
<td>2</td>
<td>Пока используют</td>
</tr>
<tr>
<td>Внесение в корм животных смесь</td>
<td>1,5 – 1,9</td>
<td>2</td>
<td>Пока используют</td>
</tr>
<tr>
<td>Внесение в корм животных феррата</td>
<td>2 – 3</td>
<td>2–3</td>
<td>Пока используют</td>
</tr>
<tr>
<td>Использование ферративных фильтров для дезактивации молока</td>
<td>5 – 10</td>
<td>5 – 10</td>
<td>Пока используют</td>
</tr>
<tr>
<td>Фитодезактивация почвы с помощью технических культур - растений кукурузы, сои, т.п.</td>
<td>1,5</td>
<td>1</td>
<td>2–3 года</td>
</tr>
<tr>
<td>Внекорневое внесение растворимых минеральных удобрений при выращивании культурных растений (например, кукурузы)</td>
<td>1,5</td>
<td>1</td>
<td>2–3 года</td>
</tr>
</tbody>
</table>
быть, потом успешно дезaktivирована механическим средством с помощью TURF CUTTER (см. фото 7.1. и 7.2.). Таким образом, с помощью такой машины можно достичь высоких значений Кд - 20-60 единиц, практически для всех открытых территорий, которые загрязнены радиоактивными и не пахались после выпадений.

Второй вариант эффективного алгоритма деконтинации почв был разработан нами для почв, которые пахались после аварии. В этом случае радиоактивное загрязнение может быть после вспашки равномерно распределено в слое до 20 см почвы и больше. В этом случае наиболее эффективным может быть использование метода фитодезактивации. Этот метод детально описан нами выше. Показано, что оптимальная система севооборотов растений с высокими значениями Кн – коэффициентов накопления (Кн - 2-10 единиц) и значительными урожаями биомассы (4 – 8 кг/м²) позволяет за 4-5 лет значительно снизить уровень радиоактического загрязнения почв (до 5 раз по 137Cs).

Для реализации предлагаемой схемы универсального алгоритма дезактивации почв на Украине будет необходимо разработать специальную многомодульную машину на базе TURF CUTTER. Для этого необходимо создать быстро действующую и производительную машину. Эту машину предлагается сконструировать на базе 3-5 модулей TURF CUTTER, которая с умеет подрезать дернину на больших площадях, паковать и грузить срезанную дернину для вывозки. Для экономии объема снятого грунта, важно создать систему предварительного скрепинга – монитора поверхности поля, предназначенного для дезактивации. Такой координатный мониторинг позволит сканировать площадь радиоактивного загрязнения и определить заранее места и глубину снятия грунта. Наши эксперименты на территории Беларуси показали, что такое частичное (до 40 %) снятие дерна на выбранных участках поля может давать Кд – 3 единицы, тогда как полное снятие дерна на этом поле дает Кд – 4,6 единиц. Такая важная и эффективная система дезактивации с помощью TURF CUTTER, позволяет резко снизить объем вывозимого и/или захораниваемого грунта (объем захоронения может достигать 150 т/га). Таким образом, на базе двух основных методов – применение TURF CUTTER и метода фитодезактивации, может быть построена
оптимальная стратегия дезактивации загрязненных грунтов на Украине и в других странах.

7.4.3. Перспективы применения методов деконтаминации после аварии на ЧАЭС

Очевидно, что наиболее интересными, с нашей точки зрения, по широте применения и возможностями уменьшения не только индивидуальных, но и коллективных доз отличаются, как мы уже говорили выше: метод механического снятия дерни (Turf cutter) (0–5 см слоя почвы) для грунтов, которые не пахались после аварии, и метод фитодеконтаминации для вспаханных почв в комбинации с другими приемами и методами, описанными в таблице 7.3.

В зависимости от конкретной ситуации, возможно, сформировать оптимальный алгоритм и стратегию применения разнообразных методов деконтаминации радионуклидзагрязненных участков территории 30-км зоны ЧАЭС. Оптимально использовать эту систему, именно на местах концентрирования радионуклидов в биоландшафтах 30-км зоны ЧАЭС. Проведенные нами оценки и теоретические расчеты радиоемкости, позволяют определять зоны и территории концентрирования радионуклидов, на которых можно оптимально применять контрмеры по деконтаминации почв и решать стратегические задачи управления радиоемкостью большой экосистемы 30-км зоны ЧАЭС.

Стратегия применения реальных контрмер в ландшафтах может включать два основных пути. Первый путь - определение зон аккумуляции радионуклидов в ландшафте и применение контрмер именно в этих зонах, где отмечены высокие значения факторов радиоемкости. Второй возможный путь, формирование ландшафтов с помощью ландшафтно-строительных мероприятий, таким образом, чтобы повысить радиоемкость, в удобных частях ландшафта, где можно надолго захоронить радионуклиды, либо эффективно использовать контрмеры. Такими элементами ландшафта могут быть овраги, болота и т.п. Речь снова идет об управлении и повышении радиоемкости экосистем.

Общий вывод, который может быть сделан - контрмеры эффективны в местах с наибольшей радиоемкостью экосистем, и/или те, которые могут повышать значения факторов радиоемкости экосистем или их элементов.

7.4.3.1. Оценка эффективности технологии дезактивации почвы “Turf-Cutter”

Исследования, начатые нами в рамках СЕС проекта ЕСР-4 “Технологии и стратегии дезактивации”[9], позволили разработать и испытать новую технологию дезактивации загрязненных почв при помощи срезки тонкого слоя дернины (2-5 см) вибрирующим ножом специальной машины “Turf-Cutter”, способной повторять неровности микрорельефа. Наши опыты проводились на радиоактивно-загрязненных почвах в 10-км зоне ЧАЭС и на других территориях Украины и Беларуси в течение 1992-1998 гг. В экспериментах применялась промышленная установка “TURF CUTTER”. Первое испытание метода было проведено на хорошо заросшей территории радиоэкологического полигона “Буряковка” в 4 км от ЧАЭС при уровне загрязнения 100 Ки/км² по 137Cs, 80 Ки/км² по 90Sr, 7 Ки/км² по 239Pu. Предварительные исследования показали, что до 95% радиоактивности на непаханом участке полигона были сосредоточены и в это время в верхнем слое дернины. В результате испытаний на выбранном участке был достигнут эффект дезактивации почвы с коэффициентом дезактивации (Кд) 25-40.

Второе испытание метода было проведено на полигоне “Чистоголовка” в 3 км от ЧАЭС. Полигон характеризовался высоким уровнем радионуклидного загрязнения (150 Ки/км² по 137Cs), слабой дернины на легкой песчаной почве и неровной поверхностью. Снятие дернины на этом полигоне позволило провести достаточно эффективную дезактивацию почвы (Кд = 10-15).

Еще одно испытание, проведенное нами в Белорусской части Зоны, продемонстрировало возможность выборочного снятия дернины в условиях пятистного радионуклидного загрязнения. Оперативная оценка пятнистости загрязнения была проведена с помощью, полевого гамма-спектрометра “Корт” (созданного в Институте им. Курчатова, Россия). По данным оценки было произведено выборочное снятие дернины на этом участке, что позволило уменьшить объем снятой дернины на 70 %. При этом Кд для участка в целом по 137Cs составил 5-7 единиц.

Очередное испытание метода было проведено нами в 1993 г. в с. Милячи (Ровенская область, Дубровицкий район, Украина) на пастбище “Став” с осушенными торфяно-болотными почвами и уровнем загрязнения по 137Cs около 5 Ки/км², которое не подвергалось
воздействию иных контаминаторов. После снятия загрязненной дернины (Кд = 15-20), на полигоне были высажены многолетние кормовые травы. Уровень радиоактивного загрязнения этих трав был в 20 раз ниже, чем на контрольных участках. Сравнение уровней загрязнения молока от опытных коров, которых кормили травой с дезактивированного участка, с молоком от контрольных коров, траву для откорма которых брали с соседних недезактивированных участков, показало, что Кд по молоку составил в 1993 г. около 20 единиц.

Полученные данные свидетельствуют о чрезвычайно высокой эффективности предложенной технологии дезактивации загрязненных почв с помощью снятия дернины специальной машиной, используя принцип вибрирующего ножа. Кд составил от 7-15 на пылевато- песчаных и песчаных почвах с рыхлой дерниной до 20-40 на осушенных торфяно-болотных почвах с наиболее плотной дерниной. По данным полевых испытаний установлена зависимость эффективности данной технологии дезактивации от характера почв, растительного покрова и ландшафтных условий и показана высокая степень ее экологической безопасности. Это позволило, используя элементы ГИС-технологий, выполнить соответствующие оценки, выполнить зонирование загрязненной территории по эффективности применения Turf-Cutter для ее очистки и выделить участки, где ожидаемая эффективность будет наиболее высокой.

7.4.3.2. Оценка возможности создания дернины на супесчаных почвах полигра в 30-км зоне ЧАЭС

Для оптимального использования метода дезактивации почв путем снятия верхнего слоя дерна машиной типа TURF CUTTER, важно иметь возможность создания искусственной дернины на песчаных грунтах (на пример, на «пыльном плато» в г. Припять). Эта возможность значительно расширяет применимость машины TURF CUTTER в 30-км зоне и на других радионуклид загрязненных территориях Украины и других стран.

Нами были проведены исследования по искусственному задернению почв с помощью многолетних трав и озимой ржи. Показано, что для успешного проведения задернения почв можно использовать классический метод (с подпокровным высевом смеси многолетних трав) или ускоренным методом, путем высева озимой ржи. Для создания прочной дернины на супесчаных почвах оптимально необходимо 3 года, после чего формируется дернина, которую можно снимать с помощью специальной машины TURF CUTTER. Ускоренный метод позволяет через 2-3 месяца создать с помощью озимой ржи надежный дерновый слой. Динамика создания дернины показана в таблице 7.4 (совместно с ИБОХ НАНУ).

<table>
<thead>
<tr>
<th>Таблица 7.4. Динамика создания дернины в второй год вегетации (в г. воздушно-сухой биомассы на 1 м² площади поля).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Культура</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Песчаная почва.</td>
</tr>
<tr>
<td>Смесь многолетних трав</td>
</tr>
<tr>
<td>Озимая рожь</td>
</tr>
<tr>
<td>Супесчаная почва.</td>
</tr>
<tr>
<td>Смесь многолетних трав</td>
</tr>
<tr>
<td>Озимая рожь</td>
</tr>
<tr>
<td>С полимерным экраном</td>
</tr>
<tr>
<td>Смесь многолет-них трав</td>
</tr>
<tr>
<td>Озимая рожь</td>
</tr>
</tbody>
</table>
Эти данные демонстрируют перспективность создания искусственной дернины на песчаных и супесчаных почвах для последующей дезактивации этих участков, путем снятия дерна с помощью специальной машины turf-cutter. Нами исследована возможность, что создание искусственной дернины 80-90% радионуклидов продолжают находиться в верхнем слое почвы, что гарантирует высокую эффективность данного механического метода дезактивации почвы.

7.4.3.3. Применение turf-cutter на территории с. Милячи (Дубровицкий район, Ровенская область)

Примером эффективного использования контрмер, являются результаты их реализации на примере с. Милячи, Дубровицкого района, Ровенской области (таблица 7.5).

Таблица 7.5. Общие характеристики реализованных контрмер (KM) на примере с. Милячи, Дубровицкий район, Ровенская область (1988 – 1993 гг.)

<table>
<thead>
<tr>
<th>Название KM</th>
<th>Площадь (га)</th>
<th>Количества голов</th>
<th>Внесение (тонн)</th>
<th>Кд</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>В коллективных хозяйствах</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Глубокая вспашка</td>
<td>990</td>
<td>300</td>
<td>50</td>
<td>1,5-2</td>
<td>1</td>
</tr>
<tr>
<td>Внесение высоких норм удобрений</td>
<td>720</td>
<td>200</td>
<td>50</td>
<td>2-2,5</td>
<td>1</td>
</tr>
<tr>
<td>Известкование почв</td>
<td>420</td>
<td>100</td>
<td>50</td>
<td>1,5-2,5</td>
<td>1</td>
</tr>
<tr>
<td>Улучшение пастбищ</td>
<td>250</td>
<td>50</td>
<td>25</td>
<td>2,5-3</td>
<td>1</td>
</tr>
<tr>
<td>Внесение навоза и сапропеля</td>
<td>440</td>
<td>100</td>
<td>25</td>
<td>1,7-1,9</td>
<td>1</td>
</tr>
<tr>
<td>В частных хозяйствах</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Использование болюсов</td>
<td>80</td>
<td>300</td>
<td>50</td>
<td>2-2,8</td>
<td>1</td>
</tr>
<tr>
<td>Внесение в корм хумолита</td>
<td>150</td>
<td>50</td>
<td>7</td>
<td>1,5-1,9</td>
<td>1</td>
</tr>
<tr>
<td>Внесение в корм ферруцина</td>
<td>50</td>
<td>20</td>
<td>7</td>
<td>2-3</td>
<td>1</td>
</tr>
<tr>
<td>Применение turf-cutter на пастбищах</td>
<td>0,5</td>
<td>3</td>
<td>18</td>
<td>0,9</td>
<td></td>
</tr>
</tbody>
</table>

Видно, что экономия коллективной дозы для населения составляет около 380 человеко-бэр. Ожидаемая коллективная доза для населения по дине питания составляет около 1800 человеко-бэр. Таким образом, экономия в 380 человеко-бэр, вследствие использования контрмер в частном секторе, не составляет значительного снижения индивидуальной и коллективной дозы для населения. Экономия коллективной дозы в коллективном секторе -1284 человеко-бэр составляет значительную величину, но направлена она, в основном, на уменьшение экспортированной дозы.

Мы сделали анализ возможностей использования метода снятия верхнего слоя почвы (дернины) на территории с. Милячи. Данные этого анализа приведены в таблице 7.7. Территория, на которой возможно эффективно использовать turf-cutter, оценивается
в 340 га торфяных почв. Это пастбища, которые не пахались после аварии на ЧАЭС.

Таблица 7.7. Ожидаемая экономия коллективной дозы по молоку от использования на частных пастбищах метода снятия дернины (площадь 340 га; $K_d=20$)

Тип почвы	Содержание ^{137}Cs Ки/км2 (площадь, га)	Загрязнение молока (Бк/л) до	Экономия коллективной дозы (человеко-Бэр)			
-----------	---------------------------------	----------------	---------------------------------			
Подзолистые	2-5 (100)	150-200	10	242		
	5-15 (60)	400-600	25	435		
Торфяные	2-5 (110)	200-300	15	383		
	5-15 (70)	600-900	40	751		
Всего				1810		

Следует подчеркнуть, что защитные мероприятия, широко применяемые в сельском хозяйстве, как правило, не изменяют (не ухудшают) качество агроэкосистем, и тем самым не снижают значений фактора радиоемкости (таблица 7.1). Исключение составляет применение turf cutter (специальной машины для снятия дернины (1-5 см слоя). При этом теряется часть плодородного слоя, что и вызывает некоторое снижение фактора радиоемкости почвенного покрова ($F=0.9$). Особо опасно для экосистемы механическое снятие плодородного слоя (10-15 см), с помощью бульдозера и другой тяжелой техники. Для условий Полесья это означает обнажение песка, что и вызывает заметное снижение фактора радиоемкости почвенно-вегетативного покрова ($F=0.05$). Более того, после обнажения песка на промплощадке ЧАЭС потребовались специальные контрмеры по закреплению и восстановлению растительности.

Разнообразие эффективных контрмер в конкретном сельском хозяйстве Ровенской области (с. Мячи) представлено в таблице 7.5. и 7.6. Эти контрмеры, примененные как в коллективных хозяйствах, так и в частных, характеризуются экологичностью и отсутствием заметного снижения радиоемкости агроэкосистем.

Это означает, что используемые в сельскохозяйственном производстве контрмеры, в основном, не разрушают экосистему и не ухудшают характеристики их радиоемкости.

7.5. Перспективы применения turf-cutter на территории Украины

В таблице 7.8 нами сделаны оценки ожидаемой пользы в результате использования машины типа turf cutter на радиоуclide-загрязненных территориях Украины.

Таблица 7.8. Оценка ожидаемой пользы и экономии коллективных доз после использования машины типа turf cutter на радиоуclide-загрязненных территориях Украины.

<table>
<thead>
<tr>
<th>Область</th>
<th>Площадь, тыс.га</th>
<th>Экономия коллективной дозы (человеко-Бэр)</th>
<th>Стоимость работы turf- cutter, тыс. $</th>
<th>Польза, тыс. $</th>
<th>Польза за- вед., тыс. $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Киевская</td>
<td>15</td>
<td>25</td>
<td>200</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Житомирская</td>
<td>11</td>
<td>55</td>
<td>275</td>
<td>1760</td>
<td>1485</td>
</tr>
<tr>
<td>Ровенская</td>
<td>15</td>
<td>75</td>
<td>375</td>
<td>2400</td>
<td>2025</td>
</tr>
<tr>
<td>Всего</td>
<td>27</td>
<td>135</td>
<td>675</td>
<td>4360</td>
<td>3685</td>
</tr>
</tbody>
</table>

Уровень загрязнения ^{137}Cs (1-5 Ки/км2)

<table>
<thead>
<tr>
<th>Область</th>
<th>Площадь, тыс.га</th>
<th>Экономия коллективной дозы (человеко-Бэр)</th>
<th>Стоимость работы turf- cutter, тыс. $</th>
<th>Польза, тыс. $</th>
<th>Польза за- вед., тыс. $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Киевская</td>
<td>0,3</td>
<td>4</td>
<td>7,5</td>
<td>128</td>
<td>120</td>
</tr>
<tr>
<td>Житомирская</td>
<td>2,5</td>
<td>30</td>
<td>62,5</td>
<td>960</td>
<td>897</td>
</tr>
<tr>
<td>Ровенская</td>
<td>1,0</td>
<td>12</td>
<td>25,0</td>
<td>384</td>
<td>359</td>
</tr>
<tr>
<td>Всего</td>
<td>3,8</td>
<td>46</td>
<td>95</td>
<td>1472</td>
<td>1377</td>
</tr>
</tbody>
</table>

Стоимость одного человека-бэра принята нами 40 $ по законам Украины (самая низкая оценка по сравнению, с западными странами) [3]. Общая польза от широкого использования turf cutter на нераспаханных торфяных пастбищах и лугах Украины оценивается в 5062 тыс $, что составляет достаточно значительную величину.

Можно сравнить использование дезактивации пастбищ с помощью turf cutter с традиционными методами - оккультирования пастбища (высев трав, мелиорация и тому подобное). Приведенный анализ данных об использовании улучшения пастбищ на территории Украины, которые испытывали загрязнение, показал, что оценка соотношения польза – составляет около 1668 тыс $.

Сравнение соотношения польза-вред для этих двух методов показывают, что дезактивация грунтов с помощью turf cutter, после аварии практически вдвое более эффективна, чем традиционное улучшение пастбищ и лугов. Далее с течением времени, эта разница
будет расти, так как улучшение нужно повторять раз в 3 года, а дезактивацию с помощью turf cutter, достаточно сделать один раз. Эти данные еще раз подчеркивают высокую эффективность метода дезактивации грунтов на пастбищах и лугах с помощью turf cutter, а также необходимость развития этого метода и его использование на Украине.

7.6. Сравнительный анализ эффективности некоторых контрмер, направленных на уменьшение негативных последствий действия загрязняющих веществ

В таблице 7.9. приведены обобщенные данные министерства чрезвычайных ситуаций Украины, по объемам использования такой эффективной контрмеры как улучшение лугов и пастбищ на территории всей Украины по годам.

Таблица 7.9. Использование улучшения пастбищ и лугов на Украине (уровень загрязнения 137Cs -5- 5 Ки/км2)

<table>
<thead>
<tr>
<th>Годы</th>
<th>Площадь тис. га</th>
<th>Экономия кол. дозы тыс. чел.-бр</th>
<th>Стоимость работы, тыс. долларов США</th>
<th>Польза, тыс. долларов США</th>
<th>Польза – вред, тыс. долларов США</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1987</td>
<td>2</td>
<td>16</td>
<td>52</td>
<td>640</td>
<td>588</td>
</tr>
<tr>
<td>1988</td>
<td>5,5</td>
<td>44</td>
<td>143</td>
<td>1760</td>
<td>1617</td>
</tr>
<tr>
<td>1989</td>
<td>11,3</td>
<td>90</td>
<td>294</td>
<td>3600</td>
<td>3306</td>
</tr>
<tr>
<td>1990</td>
<td>53,8</td>
<td>430</td>
<td>1399</td>
<td>17200</td>
<td>15800</td>
</tr>
<tr>
<td>1991</td>
<td>126,9</td>
<td>1015</td>
<td>3299</td>
<td>40600</td>
<td>37300</td>
</tr>
<tr>
<td>1992</td>
<td>177,2</td>
<td>1418</td>
<td>3299</td>
<td>56720</td>
<td>53420</td>
</tr>
<tr>
<td>1993</td>
<td>62,3</td>
<td>498</td>
<td>1620</td>
<td>19920</td>
<td>18300</td>
</tr>
<tr>
<td>Всего</td>
<td>439</td>
<td>3511</td>
<td>11414</td>
<td>28096</td>
<td>127300</td>
</tr>
</tbody>
</table>

7.6.1. Реализация на территории Украины некоторых эффективных контрмер

В таблице 7.10. представлены суммарные данные по оценке эффективности некоторых контрмер с расчетом территорий и соотношения польза-вред.

Таблица 7.10. Суммарные данные по реализованным контрмерам в коллективном секторе Украины (1986-1994)

<table>
<thead>
<tr>
<th>Контрмеры</th>
<th>Площадь тыс. га</th>
<th>Ущерб $ США (затраты)</th>
<th>Экономия тыс. чел.-бр</th>
<th>Польза $ США</th>
<th>Польза- Вред $ США</th>
</tr>
</thead>
<tbody>
<tr>
<td>Известно-вание</td>
<td>578</td>
<td>7029</td>
<td>3467</td>
<td>139000</td>
<td>132000</td>
</tr>
<tr>
<td>Внесение в почву удобрений</td>
<td>803</td>
<td>10130</td>
<td>4819</td>
<td>193000</td>
<td>183000</td>
</tr>
<tr>
<td>Улучшение пастбищ</td>
<td>536</td>
<td>22032</td>
<td>4286</td>
<td>17100</td>
<td>149000</td>
</tr>
<tr>
<td>Всего</td>
<td>1917</td>
<td>30191</td>
<td>12572</td>
<td>503000</td>
<td>464000</td>
</tr>
</tbody>
</table>

Хорошо видно, сколько высока эффективность сельскохозяйственных контрмер, реализованных в коллективных хозяйствах Украины. Из общей суммы ожидаемой коллективной дозы для населения Украины в 19-20 млн. чел-бр за 9 лет, около 12,6 млн.чел-бр было "экономлено" благодаря реализованным контрмерам (63%). Видно, что ожидаемое соотношение польза-ущерб составляет 464000 тыс $ США.(Цена одного чел-бр для Украины принимается равной 40 $ США).

7.7. Заключение

Ландшафты 30-км зоны ЧАЭС представляют собой систему водосборных площадей, лугов, малых рек, и в конечном итоге, большую часть водосборной площади Днепра. Известно, что примерно 40% стока радионуклидов в Днепровский каскад дает именно 30-км зона ЧАЭС.

Типовыми элементами экосистемы, формирующей сток радионуклидов в р. Днепр являются склоновые экосистемы последовательного типа, а также ландшафтные экосистемы параллельного типа. В экосистемах последовательного типа сброс радионуклидов происходит поэлементно из одного в другой элемент ландшафта. Пример последовательной склоновой экосистемы мы выше рассматривали (см. 6 и 7 разделы). Пример параллельной системы - это водоток (река или ручей) куда происходит сброс радионуклидов, независимым образом. В реальных ландшафтах реализуются и более сложные комбинированные варианты.

Анализ радиоемкости ландшафтов следует начинать с классификации территории, с выделения мест (зон) концентрирования радионуклидов, где наилучшим способом могут быть реализованы
Очевидно, что предложенные здесь принципы, методы и подходы годятся для самых разных экосистем - континентальных и водных и для различных типов загрязнителей (физической, химической и биологической природы).

Литература

ЧАСТЬ 8.
НЕРЕШЕННЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ
ОБЩЕЙ И ТЕОРЕТИЧЕСКОЙ
РАДИОЭКОЛОГИИ

Тридцатый год после аварии на Чернобыльской АЭС важный
поворот для анализа того, что сделано, а что не сделано в современной
радиоэкологии. Авария вышла из-под контроля радиоэкологов в связи с
техническими и природными особенностями данной аварии, это ее масштаб
и степень влияния на окружающую среду. Главная особенность данной
аварии, это ее масштаб и степень влияния на окружающую среду (ОС),
население и персонал, занятый в 30–60 км отчуждения и за ее пределами.
В результате на биоту экосистем оказано и оказывается значительное
дозовое воздействие от единицы сГр до десятков Гр. Принципиального
выхода нет, в частности, к реализации эффекта «Рождение леса» - гибель наиболее радиочувствительных
и важных в волокон пород деревьев[1]. Заметные сукцессионные процессы
происходят и происходят во флоре и фауне зоны и окружающих
территорий[2]. И еще много чего можно ожидать, так как срок после
аварии, не достаточен для проявления долгосрочных, генетических,
популяционных и экологических последствий. Вначале, из-за
постоянных процессов распределения и перераспределения
радионуклидов по трофическим цепям и компонентам экосистем
(биота, донные отложения, лесная подстилка и т.д.) следует ожидать
изменения накопленной дозы в биотических составляющих, а
значит и новых последствий.

В ходе ликвидации последствий аварии было реализовано
более 200 различных контрмер, которые образовали множество
разных по эффективности и по последствиям воздействий. Эти
усилия заслуживают полного анализа и изучения итогов этих
контрмер, для оценки эффективности и, наконец, создания универсальной
системы контрмер, пригодной для использования в других
экологических авариях и ситуациях.

Заметные дозовые нагрузки получило и население, эвакуированное
из 30–60 км зоны и проживающее на радионуклидзагрязненных
территориях. Причем по самым скромным оценкам, от 70 до 90 %
общей дозы население получило в 1986 году. При этом пока нет
обоснованной оценки доз первых лет аварии по разным
территориям. Последствия этих дозовых нагрузок только накапливаются
и реализуются, и отслеживать и исследовать их придется еще долго.

Исходя из этого на Украинской секции Международного
союза радиоэкологов, было решено созвать специальный семинар
Круглого стола на эту тему: НЕРЕШЕННЫЕ ПРОБЛЕМЫ
СОВРЕМЕННОЙ РАДИОЭКОЛОГИИ. Такой семинар состоялся на
базе Института агрозоологии и биотехнологии УААН. Задачами
семинара было:

- очертить состояние разработки радиоэкологических
 проблем;
- обсудить нерешенные проблемы, которые требуют
 оперативного исследования;
- сформировать перечень актуальных нерешенных проблем
 радиоэкологии.

На семинаре было заслушано около 10 затравочных докладов
и 14 выступлений ведущих ученых – радиоэкологов Украины.
Большая часть этих докладов представлена в специальном номере
журнала по агрозоологии [3,4]. В них отображено многогранное
видение состояния дел в современной радиоэкологии и сделан
фундаментальный анализ проблем. Для изучения ситуации, нами
был применен метод ранговых оценок. Для этого методом личного
опроса и по E.mail, были собраны предложения разных ученых
экспертов в перечень тем и проблем современной радиоэкологии,
которые настоятельно требуют обсуждения и исследования.

Таким образом, было собрано 88 формулировок разных
проблем и задач радиоэкологии, которые авторы согласно своему
опыту, знаниям и интуиции решили выделить.

Таким образом, была сформирована анкета и разослана всем
пожелания ученым участникам семинара. В анкете было предложено
всем участникам выступить в роли экспертов и проставить баллы от
10 до 1 по всем сформированным проблемам, в зависимости от
значимости и степени решенности. 18 ученых прислали свои мнения
в виде персональных анкет. В соответствии с методами ранговых
оценок, были просуммированы баллы по всем 90 пунктам и
образована итоговая таблица. В этой таблице 8.1, предложенные
проблемы выстроены в порядке убывания баллов. Чем выше сумма
баллов, тем важнее, по мнению экспертов, данная проблема.
Таблица 8.1. Нерешенные радиоэкологические проблемы

<table>
<thead>
<tr>
<th>Формулировка проблемы (задачи)</th>
<th>Оценка ранга</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Мониторинг радиоэкологического, фито- и зоосанитарного состояния биоценозов 30-км зоны</td>
<td>121</td>
</tr>
<tr>
<td>2. Долговременное захоронение радиоактивных отходов.</td>
<td>118</td>
</tr>
<tr>
<td>3. Радиоэкологический мониторинг (РЭ).</td>
<td>109</td>
</tr>
<tr>
<td>4. Экологическое нормирования радиационных нагрузок на биоту и человека.</td>
<td>107</td>
</tr>
<tr>
<td>5. Экологические радиационные риски (генетические и соматические).</td>
<td>106</td>
</tr>
<tr>
<td>6. Критические ландшафты и компоненты в экосистемах.</td>
<td></td>
</tr>
<tr>
<td>7. Финансирование РЭ работ. Определение оптимальных пропорций финансирования на фундаментальные и прикладные исследования.</td>
<td>104</td>
</tr>
<tr>
<td>8. Радиоемкость и экологическая емкость экосистем.</td>
<td>104</td>
</tr>
<tr>
<td>9. Эквидозиметрия и дозиметрия радионуклидного воздействия на биоту</td>
<td>103</td>
</tr>
<tr>
<td>10. Определение критических путей миграции радионуклидов за границы Зоны.</td>
<td>103</td>
</tr>
<tr>
<td>11. Разработка критериев (выбор параметров) устойчивости экосистем.</td>
<td>102</td>
</tr>
<tr>
<td>12. «Чернобыльская» РЭ. Ее особенность и значение.</td>
<td>102</td>
</tr>
<tr>
<td>13. Гармонизация рисков от воздействия радиационных и других факторов</td>
<td>101</td>
</tr>
<tr>
<td>14. Мониторинг урановых хвостохранилищ.</td>
<td>101</td>
</tr>
<tr>
<td>15. Сотрудничество радиоэкологов на локальном и глобальном уровнях.</td>
<td>100</td>
</tr>
<tr>
<td>16. «Судьба» Зоны отчуждения ЧАЭС.</td>
<td>99</td>
</tr>
<tr>
<td>17. Методическое и методологическое значение РЭ для общей экологии (радионуклиды как трассеры для исследования фундаментальных свойств экосистем).</td>
<td>98</td>
</tr>
<tr>
<td>18. Адаптация биоты к радиационным нагрузкам при действии других факторов среды</td>
<td>98</td>
</tr>
<tr>
<td>19. Научное сопровождение работ по дальнейшей стабилизации состояния экосистем Зоны</td>
<td>98</td>
</tr>
<tr>
<td>20. Эксперимент (контроль) в радиоэкологии (РЭ).</td>
<td>97</td>
</tr>
<tr>
<td>21. Самоочистка экосистем от радионуклидных загрязнений</td>
<td>97</td>
</tr>
<tr>
<td>22. Вклад радиоэкологии в разрешение дилеммы малых доз облучения.</td>
<td>97</td>
</tr>
<tr>
<td>23. Научное сопровождение работ по обращению с РАО.</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Формулировка проблемы (задачи)</th>
<th>Оценка ранга</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Развитие и применение анализа соотношения «польза-вред» при сооружении «Укрытия –2» и при использовании контрмер, и в принятии решений.</td>
<td>96</td>
</tr>
<tr>
<td>25. Выбор и организация промплощадок для строительства АЭС (организация радионуклидвыделяющих систем).</td>
<td>96</td>
</tr>
<tr>
<td>26. Популяризация РЭ знаний.</td>
<td>95</td>
</tr>
<tr>
<td>27. Снятие с эксплуатации АЭС.</td>
<td>95</td>
</tr>
<tr>
<td>28. Радионуклидное загрязнение подземных и артезианских вод.</td>
<td>95</td>
</tr>
<tr>
<td>29. Определение критических путей миграции радионуклидов за пределы Зоны.</td>
<td>95</td>
</tr>
<tr>
<td>30. Обобщенные параметры состояния экосистем в условиях радионуклидных загрязнений.</td>
<td>94</td>
</tr>
<tr>
<td>31. Преподавание РЭ. Подготовка готовых исследовательских групп.</td>
<td>94</td>
</tr>
<tr>
<td>32. Медицинская РЭ. Социальная РЭ.</td>
<td>94</td>
</tr>
<tr>
<td>33. «Трассерные» технологии – использование чернобыльских трассеров для экологических и геофизических исследований.</td>
<td>94</td>
</tr>
<tr>
<td>34. Ретродозиметрия (ретрофактородозиметрия)</td>
<td>93</td>
</tr>
<tr>
<td>35. «Критические» («маркеры») продукты в оценке доз от радионуклидов на человека. Объективная оценка структуры и динамики питания человека в условиях радионуклидного загрязнения.</td>
<td>93</td>
</tr>
<tr>
<td>36. Применение геоинформационных технологий (ГИС) в радиоэкологии</td>
<td>92</td>
</tr>
<tr>
<td>37. Характеристики и скорости миграции радионуклидов в экосистемах.</td>
<td>92</td>
</tr>
<tr>
<td>38. Сопоставление радиоэкологических рисков с другими радиационными и нерадиационными рисками и угрозами. Подходы к управлению рисками на основании оценки их относительной значимости.</td>
<td>92</td>
</tr>
<tr>
<td>39. Физикохимия миграции радионуклидов.</td>
<td>92</td>
</tr>
<tr>
<td>40. Разработка реестра контрмер с рекомендациями по их адаптации к конкретным условиям радионуклидного загрязнения.</td>
<td>91</td>
</tr>
<tr>
<td>41. Применимость средних и максимальных оценок радиоэкологических рисков в условиях неопределенности (флуктуации) формирующих факторов. Стандартизация подходов (алгоритмов) установления максимальных оценок радиоэкологических рисков.</td>
<td>91</td>
</tr>
<tr>
<td>42. Комплексная реабилитация радиационно-опасных земель</td>
<td>91</td>
</tr>
</tbody>
</table>
43. ОЭЭИИ (относительная экологическая эффективность нейтрализующего излучения) 90
44. Адаптация опыта России и Белоруссии в решении проблем сельхоз. Э (опыт применения контрмер) 90
45. Связь радиоустойчивости к хроническому и островому облучению. Прогностическое значение оценок параметров детерминированных эффектов для аналогичных оценок стохастических эффектов. 90
46. Конструирование (инженерия) экосистем с заданными радиоэкологическими параметрами в зоне влияния АЭС. 89
47. Проблема аномалий в Кн и Кп – радионуклидов в системе почва-растения 89
48. Статистические аспекты и специфика РЭ исследований. Проблема экстра- и интерполяции в РЭ эпидемиологии. 89
49. «Радиоэкологический градусник» 88
50. Разработка единой терминологии. 88
51. Создание единой информационной базы. 87
52. Сопряженность пробоотборов во время экспериментальных работ в реальной среде. 87
53. Повышение барьерных функций экосистем и оптимизация деятельности водоохранных сооружений 87
54. Применение аналитических геоинформационных систем в радиоэкологии. 86
55. Роль элементов носителей в миграции радионуклидов по трофическим цепям. 85
56. Сопоставление радиоэкологических рисков с другими радиационными и нерадиационными рисками и угрозами. Подходы к управлению рисками на основании оценки их относительной значимости. 85
57. Модели поведения радионуклидов в окружающей среде. 84
58. Управление самоочисткой экосистем от радионуклидов. 84
59. Разработка критериев оценки существующих и перспективных направлений организации природо- заповедной деятельности в зоне 84
60. Издательская деятельность, конференции, съезды и т. п. 83
61. Методы и модели оценки воздушного переноса радионуклидов при радиационных авариях. 83
62. Радиоэкологическая оценка западинных, болотных и других переувлажненных ландшафтов 83
63. Профилактика и терапия экосистем в условиях радиационных нагрузок. 82

64. Радиация и эволюция. Роль радионуклидных аномалий для онтогенеза и филогенеза. 82
65. Роль трансграничного переноса радионуклидов в экосистемах. 81
66. Оценка онтогенетических радиационных рисков от ПРФ (природного радиационного фона) 80
67. Радиоэкология сверхдолгоживущих радионуклидов (90Sr, 90Sr, 129I, 129I, 137I, ТУЭ) 80
68. Ландшафтная паспортизация, в том числе ретроспективная, сеток мониторинга, точек пробоотборов, экспериментальных полигонов, участков, створов и т. д. 80
69. Вклад радиоэкологии в разрешение дилеммы малых доз облучения ИИИ. 80
70. Сукцессионые процессы в биоте экосистем при радионуклидных загрязнениях. 79
71. “Precise agriculture” (Высоко точное оптимальное сельское хозяйство) на радиационно загрязненных землях 79
72. Соотношение прямых и опосредованных (например, социально-психологических) РЭ эффектов атомных катастроф. 79
73. Связь РЭ с общей радиобиологией, со смежными науками. 77
74. Влияние радиации в 30 км- зоне ЧАЭС на патогенность вирусов и микроорганизмов для растений, животных и человека. 77
75. Нанотехнологии в РЭ (например, избирательная сорбция р. п.) 77
76. Роль активной функции ответа биоты в условиях повышенной радиационной нагрузки 76
77. Паспортизация, в том числе ретроспективная, гидротермических условий экспериментальных работ в реальной среде 76
78. Сопоставимость данных ауторадиоэкологии и синрадиоэкологии. 74
79. Оптимальная организация работ по РЭ. 74
80. Разработка систем биодеконтаминации экосистем от радионуклидного загрязнения. 74
81. Радиоэкологический гормезис (радиоэкостимуляция) 74
82. Координатная привязка, в том числе ретроспективная, сеток мониторинга, точек пробоотборов, экспериментальных полигонов, участков, створов и т. д. 73
83. Исследование зависимости перехода радионуклидов в растения от параметров почвенного раствора. 73

348
84. Использование принципа невмешательства для оценки полного ущерба и чистой пользы в радиоэкологических ситуациях 72
85. Исследование зависимости параметров почвенного раствора от параметров почвы. 72
86. Объективность и универсальность доказательных “цен” (коэффициентов). 70
87. Оценка параметров радиоэкологической ситуации в течение разных временных фаз аварии (формирования поставарийной радиоэкологической ситуации) 67
88. Определение предмета радиоэкологии как научной дисциплины, комплексование и размещение с пограничными дисциплинами, выявление фундаментального ядра дисциплины и прикладных аспектов 52

(Эксперты оценивали суммарно степень значимости и нерешенности от 1-10 баллов, самые значимые и нерешенные - 10, малозначимые и решенные - 1).

В первую очередь проанализируем 20 первых позиций суммарных рейтинговых оценок, ограничивающихся снизу примерно 100 баллами.

Обращает на себя внимание тот факт, что первые две позиции в рейтинге занимают прикладные тематики, которые без сомнения являются наиболее актуальными не только для Украины, но и для мирового сообщества. Очевидно, что высокий уровень интереса к этим направлениям напрямую связан решением проблем экологического нормирования антропогенных факторов (позиции 4, 6, 8, 10, 11, 20) и экологических рисков (поз. 5, 9, 13), обусловленных надфундаментальными уровнями радиационных нагрузок на экосистемы и человека. Названные темы составляют, по нашему мнению, своеобразный “проблемный клубок” современной радиоэкологии, рассчитать который поможет должный уровень внимания со стороны общества к финансированию соответствующих работ (поз. 7).

Видно, что в пределах ТОП - двадцатки доминируют «Чернобыльская» проблематика (поз. 1, 10, 12, 16, 19). Вероятно, Чернобыльская зона отчуждения постепенно превращается из цели прикладных исследований в средство решения фундаментальных радиоэкологических проблем (например, поз. 19). Может быть на этом пути, решая проблемы нормирования и рисков, удастся “окупить” затраты, связанные с „эксплуатацией“ Зоны.

Несомненной является необходимость разработки средств управления устойчивостью экосистем к антропогенным нагрузкам, о чем свидетельствует «высоко оцененная» поз. 18, отражающая адаптацию экосистем, в частности, к радиационным нагрузкам и их сочетанному влиянию с другими стрессирующими, экосистемы факторами.

Проведя общий анализ концентрации научных интересов по проблемам радиоэкологии можно выделить несколько основных блоков интересов экспертов-специалистов в экологии и радиоэкологии:

1. Самый большой интерес (отраженный в баллах ранговой оценки от экспертов) представляют проблемы и аспекты мониторинга радиоэкологических загрязнений и процессов – 20 пунктов анкет посвящено этим темам (1, 3, 6, 12, 14, 17, 28, 39, 47, 52, 61, 62, 65, 68, 71, 79, 82, 83, 85, 87). Это значительный перевес в оценке значимости и нерешенности. Иначе говоря, во многом эти проблемы, и не решены и требуют дальнейшей разработки.

2. Второй по значимости эксперты считают проблему экологического нормирования радиационных воздействий и загрязнений и оценку экологических рисков от них – 8 пунктов анкет (4, 5, 13, 34, 38, 41, 56, 68). Эта оценка может означать, что проблема экологического нормирования допустимых уровней радиационного воздействия и экологических рисков для населения, персонала и биоты ОС, в ряду прикладных и теоретических проблем современной радиоэкологии занимают, по мнению экспертов одно из приоритетных направлений.

3. Третье место в этом ряду эксперты выделили проблему анализа и оценки соотношения польза-вред - 6 пунктов анкет (24, 42, 45, 73, 84, 88). Хотя эти пункты у экспертов получили меньше 100 баллов, тем не менее, это означает тот факт, что современные в западной экологии, проблемы анализа соотношения польза-вред, значимое место могут занимать и в научных интересах Украинских экологов и радиоэкологов.

4. Далее эксперты выделяют по значимости теоретические аспекты современной экологии и радиоэкологии:

а) Проблемы экологической и радиоэкологической емкости типовых экосистем - 5 пунктов анкеты (8, 11, 18, 21, 49);

б) Общеэкологические аспекты радиоэкологических проблем - 5 пунктов анкеты (64, 70, 74, 78, 81).
в) Проблема установления оценок критических экосистем - 4 пункта анкеты (6, 10, 35, 63).

Ясно, что эти проблемы заслуживают пристального интереса ученых экологов и радиоэкологов.

В целом обращает на себя внимание широта и значимость нерешенных проблем современной экологии и радиоэкологии. В этом научном русле современная радиоэкология берет на себя функции - теоретической экологии. Это благодаря широте и уровню проведенных и планируемых исследований в радиоэкологии, наличию удобных для определения и контроля, радионуклидных трассеров. Такими трассерами являются радионуклиды 137Cs и 90Sr, биогенные элементы - аналоги важнейших макроэлементов биоты (K и Ca), отслеживая которые, можно оценивать физиологически и, в целом, биологически определяющие элементы жизни и благополучия биосферы. Чернобыльская авария - крупнейшая экологическая катастрофа для территорий и населения Украины, Беларуси и России. В то же время «щедро» разбросанные трассеры позволяют нам провести анализ и оценку состояния, благополучие, сукцессионные процессы и фундаментальные параметры и характеристики типовых экосистем наших стран. Эти результаты могут быть пригодны, после небольшой коррекции, и для оценок поведения других поллютантов (тяжелых металлов, например).

Обращает на себя внимание и относительная простота необходимых исследований и их универсальность[1,3].

Литература
1. Кутлахмедов Ю.А., Матвеева И.В., Rodina В.В. Надежность экологических систем. Теория, модели и практические результаты. Palmarium academic publishing. 2013. - 318 c.
3. Кутлахмедов Ю.А., Гродзинский Д.М., Михеев А.Н., Rodina В.В. Методы управления радиооекостью. Методическое пособие. – Киев; КГУ, 2006. - 172 c.

ЧАСТЬ 9. СОХРАНЕНИЕ НАДЕЖНОСТИ ЖИВЫХ ОРГАНИЗМОВ (ВМЕСТО ЗАКЛЮЧЕНИЯ)

Рассмотрим проблему сохранения надежности биологических систем. Сначала рассмотрим проблему надежности на уровне клеток. Каково оптимальное значение надежности биологических объектов - клеток? Известно из формальной теории надежности сложных систем, что мерой надежности является вероятность безотказной работы системы, которая может изменяться от 0 до 1. Очевидно, что надежность должна быть достаточно высокой, чтобы биологический объект (клетка) существовал достаточно долго в изменяющихся условиях среды и во времени. В условиях реального функционирования надежность молекул, макромолекул в клетке может быть разной, но все же достаточной для реализации функции. При высокой избыточности молекул, которые, как правило, не подвергаются восстановлению, и когда их количество много больше потребного, время их жизни может быть ограничено минутами и/или часами. (В качестве контрольного времени можно использовать величину длительности клеточного цикла для пролиферирующих клеток). В этом случае мера их надежности - P, может находиться в диапазоне: 0 < P < 0,5. Величина надежности - 0, означает, что время существования молекулы ничтожно мало, и явно недостаточно для осуществления молекулами даже самой простой функции. Величина надежности в 0,5, может означать, что при заметном времени функционирования (клетки), половина имеющихся молекул данного типа, могут распадаться и выпадать из функции клетки. То есть, для реализации функции данной молекулы в клетке достаточно половины их общего количества. Тут четко проявляется формула Джона Фон Немана, упомянутая ранее – биологические объекты, «это архивадежные системы, построенные из архивенадежных элементов». Это все касается нижних уровней иерархии в организации биосистем. На этих уровнях иерархии надежность биомолекул может находиться в данном диапазоне: 0 < P < 0,5. Значения надежности - P, около 0,5, реали пригодны для макромолекул-ферментов, требующих для своего функционирования включения в работу ряда субстратов, и значит значительного
времени, то есть заметной величины надежности Особенностью заметной величины надежности - Р (не меньше 0,5) если для функционирования макромолекул (ДНК, например) требуется участие систем восстановления (репарации). Известно из радиобиологии, что скорость восстановления УФ повреждений (пиримидиновых димеров), по механизму фотонвактивации, требует время – минут (иногда часов). Для репарации гамма индуцированных повреждений (одно и двух - цепочечных повреждений ДНК) требуются уже несколько часов времени. Тем самым надежность макромолекул – ДНК в клетке уже не может быть меньше, чем Р > 0,5, а то и больше. Это необходимо для реализации функции репликации ДНК, то есть для осуществления хотя бы одного цикла деления клетки. Таким образом, требования к надежности биомакромолекул ДНК, хромосом, генома клетки могут находиться реально в диапазоне 0,5 < Р < 1.

На уровне популяции пролиферирующих клеток Р > 0,5, то величина надежности может означать, что не менее половины всех клеток популяции способны хотя бы раз поделиться. Это если жизнеспособность популяции клеток может поддерживаться, даже если только половина клеток способны, хотя один раз поделиться. Величина надежности Р близкая к 1, может означать, что популяция клеток способна к бесконечному делению. Реально это возможно только в культуре клеток, без ограничений на питание и среду обитания, или в случае малигнизации клеток и (неограниченного) росту опухоли. Реально такой случай не желателен, и не означает сверхнадежности клетки. Всегда в популяции присутствует доля погибающих клеток и реально Р < 1.

На уровне тканей, органов и организма в целом, необходимые оценки надежности получены нами при анализе данных в экспериментах с ряской (Спиродела многокореная). Было показано, что если количество выживших клеток в зачатке или в меристеме ряски, достаточно (Р > 0,5) чтобы в процессе пролиферации создать необходимое и достаточное число клеток для реализации зачатка и обеспечения всей функции меристемы (генерации дочерних особей). Было показано, что такое условие обеспечивается при значениях надежности популяции пролиферирующих клеток 0,5 < Р < 1. То есть при разумном диапазоне повреждающего воздействия (радиации, например, при отсутствии гибели под лучем), надежность критического органа –растения, меристемы и организма ряски в целом, может быть высокой, и находится в заданном диапазоне: 0,5 < Р < 1. Таким образом, можно полагать, что и для других организмов условие 0,5 < Р < 1, гарантирует выживание организма в реальном (без экстремумов) изменяющихся условиях среды и во времени. Супернадежность данного организма Р ≈1, может означать, что данный вид организмов безгранично долго будет выживать, а не будет практически повреждаться естественному отбору. Если это реализуется в условиях реальной экосистемы, то такой вид захватит весь ареал обитания, и в лучшем случае способен вытеснить остальные виды данной экосистемы на края ареала. Фактически это может означать тупик эволюции, когда ничего уже не может практически измениться в данной экосистеме, за долгое время ее жизни. Ясно, что для надежности уже всей экосистемы, определяемой через поддержание значительной ее биомассы, биоразнообразия и способности к кондиционированию среды обитания, то условие, когда Р ≈ 1, не обеспечивает высокой надежности реальной экосистемы. Тогда как поддержание значений надежности в диапазоне 0,5 < Р < 1, обеспечивает практическую надежность, как отдельного вида в экосистеме, так и экосистемы в целом, прежде всего за счет биоразнообразия. Суммируя выше приведенный анализ надежности на разных уровнях иерархии, можно прийти к следующему заключению: Реальная надежность биосистемы, начиная с уровня клеток, может быть обеспечена при условии, если ее надежность – Р, лежит в диапазоне 0,5 < Р < 1.

Выполнение данной закономерности гарантирует высокую реальную надежность биосистемы, от уровня клеток до уровня экосистем, и может быть озвучено, как ЗАКОН СОХРАНЕНИЯ НАДЕЖНОСТИ.

При этом Р ≤ 0,5, что может означать гибель организма и экосистемы, то есть их не способности выжить в изменяющихся условиях среды и при конкуренции со стороны других видов. При значении надежности Р ≈ 1, можно ожидать превращения организма в бесконечно разнообразящийся, и способный к полному захвату ареала обитания данным видом в экосистеме, что конечно также не желательно. Такая ситуация может привести, при изменении внешних условий, к угнетению и/или гибели всей экосистемы, в целом.
Обратимся к нашей разработке, когда надежность экосистемы рассматривается, как надежность системы транспорта радионуклида трассера \(^{137}\text{Cs}\) по компонентам экосистемы.

Напомним, что в терминах камерных моделей надежность транспорта радионуклида может быть оценена через скорость миграции радионуклидов по компонентам экосистемы и рассчитывается по формуле для - \(F_j\) (надежность элемента по удержанию радионуклидов в данном компоненте экосистемы) (см. 2.34)(Напомним эту важную формулу: \(F_j = \sum a_{ij} / (\Sigma a_{ij} + \Sigma a_{ji})\), где \(\sum a_{ij}\) - сумма скоростей перехода радионуклидов - поллютантов из разных составляющих экосистемы в конкретный элемент ландшафта, или экосистемы, согласно камерных моделей, а \(\Sigma a_{ji}\) – сумма скоростей оттока поллютантов из исследуемой камеры - \(J\) - в другие составляющие компоненты экосистемы, сопряженные с ними. Расчеты по моделям (двух камерной и многокамерной модели) показывают, что если \(F_j = 0.5\), то это терминах камерных моделей, означает, что поступление и отток радионуклида – трассера (радиоемкость данного компонента экосистемы) в данной экосистеме равно друг другу. Это означает, что компонент экосистемы находится практически в равновесии и не поглощает \(^{137}\text{Cs}\), а значит и макроэлемент питания (К), и реально не «живет», то есть, ненадежен, и транспортирует без изменений и влияния, радионуклид далее по экосистеме, реально не удерживая его. Данный компонент экосистемы выступает, как транслятор трассера - радионуклида. Для трансляции и обеспечения транспорта радионуклидов по экосистеме необходимо, чтобы вероятность удержания радионуклидов в конкретном элементе экосистемы было \(F_j < 0.5\) было меньше чем 0.5. Тогда общая надежность транспорта радионуклидов, будет выше 0.5, что означает гарантированную доставку радионуклидов от окружающей среду к человеку и/или в другие критические элементы биоты в данной экосистеме (см. например, рассмотренную нами выше склоновую экосистему).

В терминах данного подхода на уровне экосистем, надежность может определяться через параметры радиоемкости, то есть накопления радионуклида \(^{137}\text{Cs}\), как аналого жизненно необходимого макроэлемента–К. Высокая радиоемкость - надежность биотического компонента экосистемы по удержанию и накоплению в нем трассера, свидетельствует о благополучии и жизнеспособности рассматриваемой биотической компоненты экосистемы. Особенность данного подхода в том, что чем лучше надежное биота экосистемы удерживает радионуклиды трассера, тем меньше радионуклидов поступает к человеку, а значит безопасное надежное его существование в режиме природопользования в данной экосистеме (то есть, при минимальных дозовых нагрузках). В тоже время высокий уровень удерживания - накопления радионуклидов в биотических компонентах рассматриваемой экосистемы, может означать значительные дозовые нагрузки для разной биоты экосистемы, и в конечном итоге, возможно угнетение роста и гибель такой биоты в экосистеме, и/или, как минимум заметные сукцессии в ней. Тогда высокие уровни надежности биотических компонент в диапазоне: 0.5 < R < 1, обеспечивают высокую надежность для человека в его природопользовании в условиях данной экосистемы. В тоже время такие условия, могут означать низкую надежность биоты экосистемы в диапазоне 0 < R < 0.5. Таким образом, надежность одного вида (человека), может означать снижение надежности существования других видов биоты в экосистеме. На уровне экосистемной иерархии рассмотрения, надежность для одного вида, вполне может означать резкое снижение надежности других видов в рассматриваемой экосистеме. А при угнетении - гибели самой экосистемы, надежное благополучие человека в ней, вряд ли возможно. Иначе говоря, антропоцентрическая надежность экосистемы, не гарантирует ее экологическую надежность.

Реально следует стремиться к гармонии человека и биоты в природе. Речь идет о создании таких условий, чтобы высокая надежность людей в природопользовании, не приводила к заметному снижению надежности биоты в ОС. Практика природопользования человеком, должна обеспечивать надежность биотической составляющей. До сих пор надежность популяций людей поддерживается высокой надежностью сельскохозяйственной практики людей и как результат, реальным пренебрежением к судьбе дикой биоты экосистем. В далеком и глобальном смысле, это может привести к гибели биосферы и замене ее сплошной техносферой. Невозможно себе представить эту будущую планету Земля. Тут кислород, вода и пища будут производиться техническими средствами, с огромной затратой энергии, которая также не бесконечна по запасам.
ОСНОВНЫЕ ВЫВОДЫ ИЗ ДАННОЙ КНИГИ
СЛЕДУЮЩИЕ:
1. Установлено, что фактор радиоемкости отображает изменение состояния экосистемы, как после действия гамма-облучения так и после внесения соли токсического металла- кадмия.
2. Установлена возможность опережающей оценки состояния модельной экосистемы с помощью фактора радиоемкости по специально введенному в среду – трассеру 137Cs.
3. Обнаружено позитивное влияние на показатели радиоемкости модельной экосистемы фракционирования токсического фактора, что может свидетельствовать о роли процессов восстановления растительной компоненты экосистемы в защите от токсического влияния.
4. Показано, что показатели радиоемкости по трассеру (137Cs) адекватно отображают изменение состояния модельной экосистемы, позволяют выявить восстановительные процессы при фракционировании факторов воздействия.
5. Разработанные и реализованные в работе теория и модели радиоемкости образуют важное и перспективное новое направление в современной радиоэкологии и общей экологии.
6. Развиваемая нами теория и модели радиоемкости экосистем с использованием теории и моделей надежности, позволили адекватно описать закономерности миграции и распределения радионуклидов для разных типов экосистем водоемов и суши. Теория и модели радиоемкости позволяют строго определять критические элементы экосистемы, где следует ожидать временного или конечного депонирования радионуклидов.
7. На основе шкалы дозовых нагрузок на экосистемы и их элементы удалось оценить предельные концентрации радионуклидов (Экологические нормативы), выше которых можно ожидать заметного влияния на структуру, биологические характеристики и параметры радиоемкости экосистем.
8. Закономерности перераспределения радионуклидов-трассеров в разных типах экосистем, описываемые моделями радиоемкости и надежности, позволяют на основе экологического нормирования определить предельно-допустимые сбросы и выбросы радионуклидов в конкретные виды экосистем.
9. Предлагаемый метод определения экологически обоснованных предельно-допустимых радионуклидных загрязнений экосистем и их компонентов может служить теоретической основой для системы экологического нормирования сбросов и выбросов, разных поллютантов в окружающую среду.
10. Подход на основе применения биогенных трассеров позволяет в рамках теории и моделей радиоемкости и надежности одновременно оценивать процессы миграции радионуклидов, определять дозовые нагрузки на биоту экосистем, и устанавливать фундаментальные параметры скоростей перераспределения радионуклидов и других поллютантов в разных типах экосистем.
11. Агрозэкосистема является источником транспорта радионуклидов из окружающей среды к человеку. Чем больше фактор радиоемкости данной агрозэкосистемы, тем она более надежна. Тогда можно ожидать минимальных дозовых нагрузок на людей, использующих данную агрозэкосистему.
12. Зная скорость миграции, распределения и перераспределения радионуклидов 137Cs в компонентах агрозэкосистемы, а также величину перехода цезия по всем группам населения, можно рассчитать величину надежности данной агрозэкосистемы и оценить вклад разных составляющих агрозэкосистемы в формирование дозовых нагрузок на население.
13. В зависимости от количества выпавших радионуклидов на территорию можно применять различные контрмеры, эффективность которых зависит от многих факторов (например, типа почв, влажности, количества осадков и др.) и их влияния на радиоемкость и надежность экосистем.
14. Предлагаемый метод расчета надежности может быть применен для оценки уровня загрязнения и переходов для других поллютантов в экосистемах разного типа.
Юрий Алексеевич Кутлахмедов

ДОРОГА К ТЕОРЕТИЧЕСКОЙ РАДИОЭКОЛОГИИ

Печатается в авторской редакции
Технический редактор – И.В. Соломаха

Издательство Украинского фитосоциологического центра
Киев-28, Проспект Науки, 15/40, тел. (044) 5241161

Подписано в печать 16.07.2015 г. Формат 60х84 1/16.
Бумага офсетная. Печать ризографическая. Гарнитура Times.
Усл.-печ. лист. 16.5. Уч.-печ. лист. 17.9.
Тираж 300 экз. Зак. № 125.

Напечатано в типографии
Украинского фитосоциологического центра